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Abstract

We consider hierarchies that consist of a partition of the d-dimensional unit cube into
patches and an associated tensor-product spline space for each of them. The spline spaces
possess uniform degree p and maximum smoothness Cp−1, but potentially different knots.
Under certain assumptions on this hierarchy, we show how to construct Decoupled Patch-
work B-splines (DPB-splines) that span the corresponding patchwork spline space P. More
precisely, we generate a basis for the space P formed by all Cp−1 smooth functions that
admit patch-wise representations in the associated spline spaces. Based on the framework
of decoupled tensor-product B-splines [1], we obtain a basis that is algebraically com-
plete, forms a convex partition of unity and preserves the coefficients of the local B-spline
representations. Furthermore, we present an adaptive refinement algorithm for surface ap-
proximation that generates hierarchies, which satisfy the required assumptions and hence
can be equipped with a DPB-spline basis.

Keywords: adaptive refinement, anisotropic refinement, hierarchical splines, algebraic
completeness, surface approximation

1. Introduction

Tensor-product B-splines, which are the standard for describing free-form geometries
in Computer-Aided Design, e.g., see [2], possess a fundamental limitation: Their tensor-
product structure does not support local refinement. Therefore, adaptive spline construc-
tions have been developed in order to overcome this restriction and provide more flexibility
in design and analysis. Forsey and Bartels were the first to introduce hierarchical B-spline
refinement [3]. Their hierarchical construction was later extendend by Kraft, who devel-
oped a selection mechanism that defines a basis for the hierarchical spline space [4].

T-splines [5] have been developed as an adaptive construction on meshes with T-joints.
In general these splines are not linearly independent and therefore, analysis-suitable (AS)
T-splines and AS++ T-splines have been introduced and discussed in [6, 7, 8, 9]. Moreover,
polynomial splines over hierarchical T-meshes [10, 11] and locally refined B-splines [12] have
been established. Recently, the latter construction has been generalized to LR T-splines
[13], where local refinement is performed on an initial T-mesh instead of a tensor-product
mesh.

In order to restore the partition of unity property for hierarchical splines, a truncation
mechanism has been introduced in [14]. The resulting truncated hierarchical B-splines
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(THB-splines) possess good mathematical properties, see [15, 16, 17] for a detailed anal-
ysis of stability, completeness and approximation power. Applications of (T)HB-splines
include surface approximation [18, 19, 20] and isogeometric analysis [21, 22, 23, 24, 25, 26].
Aspects of the implementation have been discussed in [27, 28]. Moreover, the hierarchi-
cal principle has been applied to other constructions, such as Powell-Sabin splines [29],
triangular splines [30], box splines [31, 32, 33], B-splines on triangulations [34], T-splines
[35, 36], and subdivision spline functions [37, 38].

While THB-splines have good mathematical properties, they are not as flexible as
other constructions like T-splines or LR B-splines. To be more precise, hierarchical B-
splines rely on a sequence of nested spline spaces and therefore, the choice of possible
refinement strategies is limited. Recently, we generalized hierarchical splines to Patchwork
B-splines (PB-splines), which are defined on a sequence of partially nested spline spaces
and enable the use of independent refinement strategies in different parts of the domain
[39, 40]. An adapted version of Kraft’s selection mechanism constructs a basis for the
patchwork spline space under certain assumptions. Similar to the hierarchical splines, a
truncation mechanism has been established in order to obtain a basis of truncated PB-
splines (TPB-splines) that forms a non-negative partition of unity. Applications of the
PB-splines in surface approximation and to lofting B-spline curves [41] have shown the
potential of this new construction.

Although the (T)PB-splines provide increased flexibility, there are still certain limi-
tations on the available refinement strategies. For instance, a region that separates two
coarser spline spaces is required to have a certain degree-dependent width, see Fig. 1. Ad-
ditionally, the spaces that are present in a degree-dependent neighborhood of any cell need
to be (upwards or downwards) compatible with the chosen space for this cell if TPB-splines
are to be generated. Consequently, a region that separates two finer (but non-nested) re-
finement regions is also required to possess a certain degree-dependent width, see Fig. 2.
For instance, also the PB-spline hierarchies considered in [41] for solving the lofting problem
do not admit TPB-splines.

Figure 1: Invalid (left) and valid (right) meshes for bicubic (T)PB-splines.

Finally we note that (T)PB-splines are not algebraically complete in general. This
is similar to THB-splines, see [1], where the use of decoupled B-splines led to significant
improvements. We build on this idea to define the new framework of Decoupled Patchwork
B-splines (DPB-splines). More precisely, we define local basis functions, called patch B-
splines, that are obtained by restricting and decoupling tensor-product B-splines.
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Figure 2: Invalid (left) and valid (right) meshes for bicubic TPB-splines.

The remainder of this paper is organized as follows: Chapter 2 introduces the general
framework consisting of patches, the local spline spaces and a patchwork spline space. A
truncation and selection mechanism are then used to define the DPB-splines. In Chapter 3
we identify assumptions that are needed in order to guarantee a certain order of smoothness
of the basis functions and for characterizing the obtained spline space. These assumptions
affect only a patch and its neighbors. The mathematical properties of the DPB-splines are
analyzed in Chapter 4. In particular, the basis functions possess continuous values and
derivatives up to a certain order, they span the patchwork spline space and form a convex
partition of unity. Moreover, we observe that the patchwork spline space is equal to the
full spline space, i.e., the basis is algebraically complete. In Chapter 5 we identify a simple
sufficient condition for a certain class of patches that guarantees that the assumptions are
satisfied. Finally, we provide an improved refinement algorithm for least-squares fitting in
Chapter 6, which generates hierachies that can be equipped with a Decoupled Patchwork
and a (truncated) Patchwork B-spline basis. Two examples are used to illustrate the
advantages of this new strategy. Finally, we conclude the paper in Chapter 7.

2. The general framework

For defining Decoupled Patchwork B-splines we construct a hierarchy consisting of
patches and corresponding spaces, which are not necessarily nested. The basis functions
are then obtained by applying a truncation and selection mechanism to local bases. Fur-
thermore, we introduce a spline space, which is defined on the hierarchy.

2.1. Patches

We consider a finite sequence of patches {π`}`=1,...,N , which are closed subsets of the
d–dimensional unit cube [0, 1]d. The upper index ` will be called the level. The patches
possess a mutually disjoint interior, int(π`)∩ int(πk) = ∅, for k 6= `, and their union defines
the domain,

Ω =
N⋃

`=1

π`.
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Not only the entire domain but certain subsets thereof will be used in the remainder of the
paper. An index set D ⊆ {1, . . . , N} generates the subdomain,

∆D =
⋃

`∈D
π` ⊆ Ω. (1)

In particular, we define ∆D,≥` = ∆D ∩ ∆≥`, with the index set ≥` = {`, . . . , N}, as the
subdomain formed by all patches in ∆D with level greater or equal to `. Furthermore, we
introduce the index set

N ` = {k : k > ` and πk ∩ π` 6= ∅},
that comprises the levels k > ` of higher level neighboring patches of π`. The index set of
higher level neighboring patches in ∆D will be denoted as

N `
D = N ` ∩ D.

The two index sets N ` and N `
D define the subdomains ∆N ` and ∆N `D , respectively.

Example 1. We consider the subdivision of the unit square into six patches, π1, . . . , π6.
Note that the patches might possess several connected components, as it is the case for
patch π2 in this example. Fig. 3 depicts several subdomains of Ω. The subdomain ∆≥3

is formed by the patches π3, . . . , π6 as illustrated in Fig. 3a. Consider D = {2, 4, 5},
thus ∆D,≥3 = π4 ∪ π5, see Fig. 3b. The higher level neighbors of π3 define the index set
N 3 = {4, 6}, see Fig. 3c. The intersection of ∆N 3 and ∆D gives the subdomain ∆N 3

D
,

which consists of π4, see Fig. 3d. ♦
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Figure 3: Example 1 – The subdomains ∆≥3, ∆D,≥3, ∆N 3 and ∆N 3
D

(a-d) for D = {2, 4, 5}.

Except for trivial situations, each patch shares parts of its boundary ∂π` with patches
of a different level. The part of the boundary that intersects with patches of a higher level
will be called the constraining boundary,

Γ` = ∆≥`+1 ∩ π`.
In addition we define the constraining boundary

Γ`D = Γ` ∩∆D = ∆D,≥`+1 ∩ π`,
with respect to the subdomain ∆D.
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Example 1 (continuing from p. 4). Fig. 4 shows the constraining boundaries Γ4, Γ4
D, Γ4

N 3

and Γ4
N 3

D
= ∅. ♦
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Figure 4: Example 1 – The constraining boundaries Γ4, Γ4
D, Γ4

N 3 and Γ4
N 3

D
= ∅ (a-d).

2.2. Spline spaces

For each level `, we choose a globally1 defined tensor-product spline basis B̂` that
consists of individual basis functions β̂` ∈ B̂`, spanning a certain spline space V̂`. Note
that we consider sets B̂` of basis functions and use the symbol β̂` to represent their elements.
The upper index indicates the level but does not identify individual basis functions.

More precisely, the basis functions are tensor-product B-splines of degree p = (p1, . . . , pd)
defined on d open knot vectors with (pi + 1)-fold boundary knots 0 and 1. All inner knots
possess multiplicity 1. Hence, we obtain B-splines of maximal smoothness, Cs(Ω), with
s = p−1. In other words, the basis functions possess continuous values and partial deriva-
tives up to order pi − 1 in each variable xi separately. The supports2 of the functions β̂`

are axis-aligned open boxes in [0, 1]d.
In addition to the B-spline bases, which are independent of the patches π`, we define

local spline bases B` on π` that consist of patch B-splines β` and span the spaces V`. The
basis functions are constructed by decoupling the restricted function β̂`|π` , see [1]. More
precisely, for each connected component ϕ of suppβ̂` ∩ π` we obtain a basis function

β` =

{
β̂` on ϕ

0 π` \ ϕ. (2)

Example 2. We consider three different biquadratic tensor-product B-splines β̂` and dis-
cuss the resulting patch B-splines with respect to a U-shaped patch π`, represented as gray
area in Fig. 5. The knot vectors of level ` define the grid that is illustrated in the three
pictures. The supports the B-splines are depicted as blue squares, and the blue circles

1i.e., with domain [0, 1]d
2Note that we use the set-theoretic definition of the support, i.e., for a function f : Ω 7→ Rd the support

of f is defined as suppf = {x ∈ Ω : f(x) 6= 0}.
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indicate their Greville points. Depending on the location of the support with respect to
the patch we obtain zero, one or two patch B-splines. ♦

(a) (b) (c)

Figure 5: Example 2 – Restriction of three tensor-product B-splines to a U-shaped patch.

The functions in B` possess good mathematical properties on π`: They are linearly
independent, non-negative, form a partition of unity and have continuous values and partial
derivatives up to order pi− 1 in each variable xi. The dual functionals, which generate the
coefficients of the local representation

f(x) =
∑

β`∈B`
λβ`(f)β`(x), for x ∈ π`,

of a function f ∈ V`, will be denoted by λβ`(.).
For later reference we note that

suppβk ∩ Γ` = suppβk ∩ Γ`D, (3)

for βk ∈ Bk and any index set D with k ∈ D and ` < k.
We introduce the extension operator, E : B` 7→ B̂`, that transforms a patch B-spline

β` ∈ B` into the globally defined tensor-product B-spline E(β`) = β̂` ∈ B̂` such that

β` = β̂`|suppβ` . (4)

The extension of a patch B-spline β` is always denoted by β̂` in the remainder of this
paper. Note that different patch B-splines β` and β′` with disjoint supports possess the
same extension β̂` = β̂′` if they are derived from the same tensor-product B-spline. It
follows that β̂`|π` ∈ V` since

β̂`|π` =
∑

β′`∈B`
β̂′`=β̂`

β′`.

Furthermore, if the spaces spanned by a pair of spline bases B̂` and B̂k are nested, i.e.,
V̂` ⊆ V̂k, for ` < k, then it holds that β̂`|πk ∈ Vk and

λβk(β̂
`) = λβ̂k(β̂

`), (5)
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where the values λβ̂k(β̂
`) of the dual functionals are the coefficients obtained by B-spline

refinement.
We conclude this subsection by introducing the patchwork spline space. On a general

subdomain ∆D we define,

PD = {f ∈ Cs(∆D) : f |πk ∈ Vk, for k ∈ D}.

Note that the tensor-product polynomials of degree p restricted to the subdomain ∆D are
contained in the patchwork spline space PD. With PD,≥` we denote the the patchwork
spline space on the subdomain ∆D,≥`, while P = P≥1 is the patchwork spline space on the
entire domain.

2.3. Basis

Our construction is based on the natural assumption that the spline spaces associated
with neighboring patches are nested.

Assumption 1 (Nested Neighbor Condition – NNC). Any two globally defined spline
spaces satisfy V̂` ⊆ V̂k if k ∈ N `.

We construct a basis by adapting Kraft’s selection mechanism [4] to the patch structure.
The Decoupled Patchwork B-splines PD on the subdomain ∆D are computed recursively,
starting at the highest level N and using the initialization PN+1

D = ∅. Since the index set D
does not necessarily contain all levels, we distinguish between two cases: When proceeding
to the next lower level `, the DPB-splines remain unchanged if ` 6∈ D. Otherwise, they are
defined as the union of selected and truncated patch B-splines,

P `
D =

{
S`+1
D ∪ T `D if ` ∈ D
P `+1
D otherwise.

More precisely, we select functions of levels higher than ` that vanish on the constraining
boundary,

S`+1
D = {β̃kD ∈ P `+1

D : β̃kD = 0 on Γ`D},
and apply truncation – indicated by the tilde operator – to the extensions of the patch
B-splines of level `,

T `D = {β̃`D : β` ∈ B`}.
More precisely, the truncated patch B-splines β̃`D, for ` ∈ D, are equal to the patch B-splines
on π` and extend smoothly (as we shall see later) into ∆D,≥` \ π`,

β̃`D =





β` on π`∑
β̃kD∈P

`+1
D

suppβ`∩ suppβk 6=∅

λβk(β̂
`) β̃kD on ∆D,≥` \ π`

0 elsewhere.

(6)

7



π`

π`−1

π`+1

π`+2β̂`

β`

(a)
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Figure 6: The supports of a patch B-spline β` (blue) and its extension β̂` (light blue) are shown in (a).
The corresponding truncated patch B-spline β̃`

D is illustrated in (b). In the hatched area the truncated
patch B-spline is equal to the patch B-spline and the non-hatched part represents the smooth extension
to ∆D,≥` \ π`.

The support condition suppβ` ∩ suppβk 6= ∅ implies that the truncated functions are
linear combinations of non-selected basis functions of higher levels on ∆D,≥` \ π`, i.e., of
basis functions that do not vanish on the constraining boundary Γ`D, see Fig. 6. Note that
the sum in (6) considers only basis functions of patches πk, with k > `, that are neighbors
of π`, i.e., k ∈ N ` ∩ D. According to NNC it follows that β̂`|πk ∈ Vk and therefore, the
coefficients λβk(β̂

`) exist and are non-negative due to the properties of B-spline refinement,
see Eq. (6).

After completing the recursion we obtain PD = P 1
D and P = P≥1.

Lemma 1. The truncated patch B-splines β̃kD ∈ T kD satisfy

suppβ̃kD ⊆ suppβ̂k. (7)

Proof. We prove this statement by induction starting from level n = max{k ∈ D}, which
is decreased until we arrive at n = 1. According to the piecewise definition of β̃nD it follows
immediately that

suppβ̃nD = suppβn ⊆ suppβ̂n.

Now we assume that (7) is satisfied for k ≥ k̄ ∈ D and it remains to be shown that the
statement holds as well for ` = max{m ∈ D : m < k̄}. We consider a basis function
β̃`D ∈ T `D. Note that

{β̃kD ∈ P `+1
D : suppβk ∩ suppβ` 6= ∅} ⊆ {β̃kD ∈ T kD : ` < k ∈ D ∧ suppβk ∩ suppβ` 6= ∅}.

Thus, it follows from the definition of β̃`D and the induction hypothesis that

suppβ̃`D ⊆ suppβ` ∪ (
⋃

k∈D, k>`

⋃

βk∈Bk
suppβk∩suppβ` 6=∅

λ
βk

(β̂`)6=0

suppβ̂k), (8)
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where the coefficients λβk(β̂
`) exist according to NNC. For non-zero coefficients λβ̂k(β̂

`) =

λβk(β̂
`) 6= 0 it holds that the supports of β̂k and β̂` are nested, i.e., suppβ̂k ⊆ suppβ̂`.

Therefore, the supports of the B-splines β̂k in (8) are contained in the support of β̂`. Since
also suppβ` ⊆ suppβ̂` we conclude that suppβ̃`D ⊆ suppβ̂`.

3. Assumptions and first results

Besides NNC, we impose two further assumptions in order to ensure good mathematical
properties of the DPB-splines.

First, we introduce a condition that concerns the intersection of a patch B-spline with
the constraining boundaries of lower levels. To be more precise, if a patch B-spline βn ∈ Bn

does not vanish on a pair of constraining boundaries Γ` and Γk, where ` < n and k < n,
then a non-empty intersection of the patch B-spline and the two constraining boundaries
is assumed to exist, see also Fig. 7.

Assumption 2 (Intermediate Patch Condition – IPC). If βn ∈ Bn satisfies

suppβn ∩ Γ` 6= ∅, ` < n and suppβn ∩ Γk 6= ∅, k < n,

then
suppβn ∩ Γ` ∩ Γk 6= ∅.

π`

πn

πk

(a)

π`

πn

πk

(b)

Figure 7: The intersection of a patch B-spline’s support (dark blue) with Γ` and Γk is represented by the

red line segments. The support of the associated extension β̂n is also shown (light blue). IPC is violated
in (a) and satisfied in (b).

The second assumption is needed to guarantee that the truncated basis functions are
Cs-smooth. We impose a condition on the intersection of a patch B-spline with a lower
level constraining boundary, see Fig. 8.

Assumption 3 (Support Intersection Condition – SIC). The support of a patch B-spline
βn ∈ Bn intersected with a constraining boundary Γ`,

suppβn ∩ Γ`,

where ` < n, is connected.

9



π` πn

π`

(a)

π` πn

π`

(b)

Figure 8: The intersection (red) of a patch B-spline’s suppport (dark blue) with a constraining boundary
Γ`, for ` < n. SIC is violated in (a) and satisfied in (b).

In this and the following section, we assume that NNC, IPC and SIC are always satisfied.
Eq. (3) implies that IPC and SIC are then also fulfilled for constraining boundaries Γ`D
with respect to index sets D, see (1). In the remainder of this section we discuss several
technical results that can be derived from IPC and SIC. The four Lemmas build upon
each other and allow us to analyze the smoothness of the PB-splines and the space that is
spanned by them, see Fig. 9.

The first observation will help us to analyze the truncation defined in (6).

Lemma 2. Two patch B-splines βk ∈ Bk and β` ∈ B` with intersecting supports,

∅ 6= suppβk ∩ suppβ` ⊆ Γ`D, with ` < k ∈ D,

satisfy
suppβk ∩ Γ`D ⊆ suppβ` ∩ Γ`D, (9)

if λβk(β̂
`) 6= 0.

Proof. The existence of non-zero coefficients λβk(β̂
`) 6= 0 implies suppβk ⊆ suppβ̂`, hence

suppβk ∩ Γ`D ⊆ suppβ̂` ∩ Γ`D. (10)

We distinguish between several cases: First, we assume that suppβ̂`∩π` is connected. This
leads immediately to (9) since β` = β̂`|π` and Γ`D ⊆ π`.

Second, we consider the case that suppβ̂` ∩ π` possesses two connected components.
Thus, besides β`, there exists another patch B-spline β′` such that suppβ` ∩ suppβ′` = ∅
and

suppβ̂` ∩ π` = suppβ` ∪ suppβ′`. (11)

The intersection of suppβk ∩ suppβ` belongs to the constraining boundary Γ`D, thus

∅ 6= suppβk ∩ suppβ` = suppβk ∩ suppβ` ∩ Γ`D. (12)

According to SIC and Eq. (3), suppβk ∩Γ`D is connected. Since the two parts suppβ` ∩Γ`D
and suppβ′` ∩ Γ`D of the constraining boundary are disjoint it follows that

suppβk ∩ suppβ′` ∩ Γ`D = ∅. (13)
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SIC

Lemma 2 IPC

Lemma 3

Lemma 4NNC

Lemma 1

Lemma 5

CCL [16]

Lemma 6

Thm.7 (ii)

Lemma 8

Lemma 9

Thm.7 (i)

Figure 9: Diagram representing the connections between Assumptions (diamonds) , Lemmas (rectangles)
and DPB-spline properties (ellipses).

We observe that (10) is equivalent to

(suppβk ∩ Γ`D) ∩ (suppβ̂` ∩ Γ`D) = suppβk ∩ Γ`D. (14)

We use (11) Γ`D ⊆ π` to rewrite the left-hand side of this equation as

suppβk ∩ suppβ̂` ∩ Γ`D = suppβk ∩ (suppβ` ∪ suppβ′`) ∩ Γ`D.

We simplify the result with the help of (12) and (13),

suppβk ∩ (suppβ` ∪ suppβ′`) ∩ Γ`D = suppβk ∩ suppβ` ∩ Γ`D.

Therefore, (14) is equivalent to

(suppβk ∩ Γ`D) ∩ (suppβ` ∩ Γ`D) = suppβk ∩ Γ`D.

This confirms that
suppβk ∩ Γ`D ⊆ suppβ` ∩ Γ`D.

Finally we note that the proof in case two can be extended to more than two connected
components.
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The next Lemma characterizes the intersection of a truncated patch B-spline β̃kD, for
k ∈ D, with a lower level constraining boundary Γ`D, see Fig. 10.

Lemma 3. The truncated patch B-splines β̃kD ∈ T k satisfy

suppβ̃kD ∩ Γ`D 6= ∅ ⇔ suppβk ∩ Γ`D 6= ∅

if k > ` and k ∈ D.

πk

π`

∆D,≥k+1

(a)

πk

π`

∆D,≥k+1

(b)

Figure 10: According to Lemma 3, the supports suppβk (hatched blue) and suppβ̃k
D (hatched blue and

blue) either intersect both with Γ`
D (red) or not, see (a) and (b), respectively.

Proof. According to the definition of the truncated functions, suppβk ∩ Γ`D 6= ∅ implies
that suppβ̃kD∩Γ`D 6= ∅. In order to prove the other implication, we assume that there exists
a β̃kD ∈ T k such that

suppβ̃kD ∩ Γ`D 6= ∅, for ` < k,

but
suppβk ∩ Γ`D = ∅. (15)

It follows that
suppβ̃kD ∩ (∆D,≥k+1 \ πk) ∩ Γ`D 6= ∅,

since β̃kD takes non-zero values only on the associated patch and on the subdomain ∆D,≥k+1.
Among all such functions we pick one where k is maximal. The representation

β̃kD =
∑

β̃mD ∈P
k+1
D

suppβm∩ suppβk 6=∅

λβm(β̂k) β̃mD on ∆D,≥k+1,

see (6), implies that there exists a function β̃mD ∈ P k+1
D with suppβm ∩ suppβk 6= ∅ such

that
suppβ̃mD ∩ Γ`D 6= ∅.

It follows immediately that
suppβm ∩ Γ`D 6= ∅,
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since k is the largest level with the property (15). Furthermore, suppβm ∩ suppβk 6= ∅
implies that suppβm ∩ ΓkD 6= ∅, and hence

∅ 6= suppβm ∩ ΓkD ∩ Γ`D ⊆ suppβk ∩ ΓkD ∩ Γ`D = ∅,

where the first equation holds according to IPC, the second statement follows from Lemma
2, and the last equality is obtained by (15). This is a contradiction.

Lemma 3 enables us to reformulate the selection mechanism. More precisely, instead of
considering the truncated patch B-spline β̃kD if suffices to analyze whether the associated
patch B-spline βk vanishes on the constraining boundary,

S`+1
D = {β̃kD ∈ P `+1

D : βk = 0 on Γ`D}.

Next, we observe that the truncated patch B-splines β̃kD ∈ T k inherit the support
intersection property:

Lemma 4. The intersections of the supports of truncated patch B-splines β̃kD ∈ T k with
constraining boundaries

suppβ̃kD ∩ Γ`D where ` < k (16)

are connected.

Proof. Assume there exists a truncated patch B-spline β̃kD whose support intersects the
lower level constraining boundary Γ`D in more than one connected component. Among all
those functions we choose one where k ∈ D is maximal. The intersection splits into two
disjoint sets δ1 6= ∅ and δ2 6= ∅ with δ1 ∩ δ2 = ∅ such that

suppβ̃kD ∩ Γ`D = δ1 ∪ δ2. (17)

SIC requires that suppβk ∩ Γ`D is connected. Since suppβk ⊆ suppβ̃kD, this implies that
suppβk ∩ Γ`D is a subset of one δi whereas its intersection with the other one is empty.
Without loss of generality we assume

suppβk ∩ Γ`D ⊆ δ1 and suppβk ∩ δ2 = ∅. (18)

According to the latter observation, the truncated patch B-spline β̃kD intersects δ2 in patches
of levels higher than k, i.e.,

suppβ̃kD ∩ (∆D,≥k+1 \ πk) ∩ δ2 6= ∅.

Due to the definition of the truncation (6), there exists a function β̃mD ∈ P k+1
D with suppβm∩

suppβk 6= ∅ that satisfies
suppβ̃mD ∩ δ2 6= ∅. (19)

Moreover, we have
suppβ̃mD ∩ Γ`D ⊆ suppβ̃kD ∩ Γ`D = δ1 ∪ δ2.
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Recall that we assumed k to be maximal. Thus suppβ̃mD ∩ Γ`D is connected and we obtain

suppβ̃mD ∩ δ1 = ∅. (20)

From suppβm ∩ suppβk 6= ∅ it follows that suppβm ∩ ΓkD 6= ∅. Furthermore, (19) leads to

∅ 6= suppβ̃mD ∩ δ2 ⊆ suppβ̃mD ∩ Γ`D,

since (17) implies that δ2 ⊆ Γ`D. According to Lemma 3 suppβ̃mD ∩ Γ`D 6= ∅ is equivalent to
suppβm ∩ Γ`D 6= ∅. Applying IPC leads to

suppβm ∩ ΓkD ∩ Γ`D 6= ∅.

Furthermore, Lemma 2 states that suppβm ∩ ΓkD ⊆ suppβk ∩ ΓkD. Combining these obser-
vations with simple subset relations and (18) results in the following equations,

∅ 6= suppβm ∩ ΓkD ∩ Γ`D ⊆ suppβk ∩ ΓkD ∩ Γ`D ⊆ suppβk ∩ Γ`D ⊆ δ1.

However, this implies that

∅ 6= suppβm ∩ δ1 ⊆ suppβ̃mD ∩ δ1,

which contradicts, (20), and thereby concluding the proof.

Finally we present an extension of Lemma 2.

Lemma 5. The supports of truncated patch B-splines β̃kD ∈ P `+1
D and patch B-splines

β` ∈ B` of lower level ` < k satisfy

suppβ̃kD ∩ Γ`D ⊆ suppβ` ∩ Γ`D,

if suppβk ∩ suppβ` 6= ∅ and λβk(β̂
`) 6= 0.

Proof. The proof works similar to the proof of Lemma 2. We do not provide all details
but show how to adapt it to the current situation.

Recall that λβk(β̂
`) 6= 0 implies suppβ̂k ⊆ suppβ̂`. From Lemma 1 it follows that

suppβ̃kD ⊆ suppβ̂` and thus,

suppβ̃kD ∩ Γ`D ⊆ suppβ̂` ∩ Γ`D.

As in Lemma 2, the proof follows immediately for the case that suppβ̂` ∩ π` possesses one
connected component. For the other case we note that

∅ 6= suppβk ∩ suppβ` ∩ Γ`D ⊆ suppβ̃kD ∩ suppβ` ∩ Γ`D,

according to the assumption that suppβk ∩ suppβ` 6= ∅. Using Lemma 4 allows us to
proceed as in the proof of Lemma 2 using β̃kD instead of βk.

14



4. Space characterization

Before investigating the mathematical properties of the DPB-splines we introduce the
notion of homogenous boundary conditions.

A Cs–smooth function f satisfies homogeneous boundary conditions in a point x if
the values of the function and of all its partial derivatives up to order sk = pk − 1 in all
variables separately3 are equal to zero,

ϑf(x) = 0,

with
[ϑf(x)]i = ∂if(x), i = (i1, . . . , id), ik ≤ pk − 1.

and partial derivative operators

(∂if)(x) =
∂i1

∂xi11
· · · ∂

id

∂xidd
f(x1, . . . , xd).

The knot hyperplanes of the space V` divide the patch π` into cells z ∈ Z`, where Z`

denotes the set of all cells of level `. Therefore, the boundary of a patch π` naturally splits
into facets ξ of different dimensions. E.g., the facets can be edges or vertices of cells of
level ` for dimension d = 2, see also the Appendix of [40].

Lemma 6. If a function f ∈ V` satisfies homogeneous boundary conditions on a boundary
facet ξ of π`, then λβ`(f) = 0 if ξ ⊆ suppβ`.

Proof. We note that for a cell z ∈ Z` and every β` ∈ B` that does not vanish on that cell,
i.e., z ⊆ suppβ`, it holds that

0 6= β`|z = β̂`|z,
according to (4). Suitably adapting the proof of Lemma 2 in [40], which is based on the
Contact Characterization Lemma (CCL) in [16], confirms this fact.

The following theorem shows that the DPB-splines form a basis and characterizes the
space that is spanned by them.

Theorem 7. We consider DPB-splines PD on any subdomain ∆D ⊆ Ω.

(i) The functions β̃`D ∈ PD possess continuous values and partial derivatives up to order
p− 1 in each variable separately.

(ii) The DPB-splines form a basis of the patchwork spline space PD.

(iii) The DPB-splines satisfy the coefficient preservation property, i.e., for any function
f ∈ PD it holds that

f =
∑

β̃kD∈PD

λβk(f) β̃kD, on ∆D. (21)

3For instance, f = fx = fy = fxx = fxy = fyy = fxxy = fxyy = fxxyy = 0 for x = (x, y) and s = (2, 2).
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(iv) The DPB-spline functions are non-negative and form a partition of unity.

Proof. We prove the above statements for all subdomains ∆D ⊆ ∆≥`, i.e., D ⊆ {`, . . . , N},
by induction over `, proceeding from the maximum level N down to 1.

For ` = N we note that ∆≥N = πN . Therefore, a subdomain of ∆≥N is either the
empty set (trivial case) or D = {N}. Then PD = TND consists of functions

β̃ND =

{
βN on πN

0 elsewhere
.

Therefore, we can conclude that (i)-(iv) are satisfied for any subdomain ∆D ⊆ ∆≥N .
Now we assume that (i)-(iv) are satisfied for any subdomain ∆D ⊆ ∆≥`+1. We show

that the properties extend to any subdomain ∆D ⊆ ∆≥`. We consider only the case where
` ∈ D, hence D ⊆ {`, . . . , N}. Otherwise, the result follows immediately from the induction
hypothesis.

(i) We have that
PD = P 1

D = P `
D = T `D ∪ S`+1

D .

For functions in S`+1
D the smoothness on ∆D = ∆D,≥` follows from the induction hypothesis

combined with the fact that the functions are zero on π` and satisfy homogeneous boundary
conditions on Γ`D according to the selection mechanism. Next we consider a function
β̃`D ∈ T `D. We note that β̃`D obviously possesses the required smoothness on π` and also
on ∆D,≥`+1 \ π` (considered separately). Indeed, its restriction to the latter domain is a
linear combination of functions in P `+1

D , which satisfy the smoothness conditions according
to the induction hypothesis.

Now it remains to be shown that β̃`D possesses the required order of smoothness on the

constraining boundary Γ`D. According to NNC it holds that β̂` ∈ PN `D . From the induction

hypothesis (ii) it follows that there exists a representation,

β̂` =
∑

β̃k
N`

D
∈PN`

D

λβk(β̂
`)β̃kN `D

on ∆N `D .

We use it to define the auxiliary function

β̂`N `D
=

∑

β̃k
N`

D
∈PN`

D
suppβk∩suppβ` 6=∅

λβk(β̂
`)β̃kN `D

, (22)

by considering only functions near the boundary to suppβ` and observe that

ϑβ̂`N `D
= ϑβ̂` = ϑβ` on Γ`D ∩ suppβ`.

Furthermore, it holds that

ϑβ̂`N `D
= ϑβ` = 0 on Γ`D \ suppβ`,
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since suppβ̃kN `D
∩ Γ`N `D

⊆ suppβ` ∩ Γ`N `D
according to Lemma 5 and Γ`N `D

= Γ`D. Therefore,

we obtain that ϑβ̂`N `D
= ϑβ` on Γ`D.

Now we show that the auxiliary function shares values and derivatives with the trun-
cated function along the constraining boundary, ϑβ̂`N `D

= ϑβ̃`D on Γ`D. More precisely, we

prove that

ϑ
( ∑

β̃k
N`

D
∈PN`

D
suppβk∩suppβ` 6=∅

λβk(β̂
`)β̃kN `D

)
= ϑ

( ∑

β̃kD∈P
`+1
D

suppβk∩suppβ` 6=∅

λβk(β̂
`)β̃kD

)
, on Γ`D. (23)

We note that
suppβk ∩ suppβ` 6= ∅ ⇒ βk|Γ`D 6= 0, if k > `.

The proof of (23) is based on two technical Lemmas. The first one states that the selection
mechanism always selectes the same functions for D and N `

D.

Lemma 8. For all βk ∈ Bk with βk 6= 0 on Γ`D it holds that

β̃kN `D
∈ Pm

N `D
⇔ β̃kD ∈ Pm

D , (24)

if k ≥ m > `.

Proof. On the one hand, we consider a function β̃kD ∈ Pm
D with suppβk ∩ Γ`D 6= ∅. Hence,

k ∈ N `
D. We note that

Pm
D =

⋃

k∈D,k≥m
{β̃kD ∈ T kD : suppβk ∩ ΓrD = ∅, for all r ∈ D, m ≤ r < k} (25)

and

Pm
N `D

=
⋃

k∈N `D,k≥m
{β̃kN `D ∈ T

k
N `D

: suppβk ∩ ΓrN `D
= ∅, for all r ∈ N `

D, m ≤ r < k},

according to the selection mechanism and Lemma 3. Since ΓrN `D
⊆ ΓrD for r ∈ N `

D, the first

condition suppβk∩ΓrD = ∅ implies suppβk∩ΓrN `D
= ∅ if m ≤ r < k. Therefore, we conclude

that β̃kN `D
∈ Pm

N `D
.

On the other hand, assume there exists a function β̃kN `D
∈ Pm

N `D
with β̃kD 6∈ Pm

D and

βk 6= 0 on Γ`D. We invoke the characterization (25) to conclude that there exists a level
r ∈ D \ N `

D and m ≤ r < k such that suppβk ∩ ΓrD 6= ∅. The considered function satisfies
suppβk ∩ Γ`D 6= ∅ and hence it follows that suppβk ∩ Γ`D ∩ ΓrD 6= ∅ by IPC. However,
since πr is not a neighbor of π` it holds that ΓrD ∩ Γ`D ⊆ πr ∩ π` = ∅ which implies that
suppβk ∩ Γ`D ∩ ΓrD = ∅. This is a contradiction. � Lem.8

The second lemma confirms that the functions considered in the previous lemma possess
the same values and derivatives along the constraining boundary.
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Lemma 9. For all functions in (24) with β̃kD ∈ Pm
D it holds that

ϑβ̃kD = ϑβ̃kN `D
on Γ`D ∩∆D,≥m, (26)

if k ≥ m > `.

Proof. We use induction over the level m from n down to ` + 1 with n = max{k ∈ N `
D}.

It suffices to consider these functions since levels higher than n are not active on Γ`D.
For level n it holds that

β̃nD = βn = β̃nN `D
, on πn,

for all β̃nD ∈ P n
D. Thus, ϑβ̃nD = ϑβ̃nN `D

on Γ`D ∩ ∆D,≥n. In order to complete the proof by

induction, we assume that (26) is satisfied for m+ 1 and show that this extends to m.
First, we consider functions β̃kD ∈ Pm

D with k > m. The induction hypothesis implies
that

ϑβ̃kD = ϑβ̃kN `D
, on Γ`D ∩∆D,≥m+1.

Furthermore, the selection ensures that these functions vanish on πm, hence

ϑβ̃kD = ϑβ̃kN `D
= 0, on Γ`D ∩ πm.

The equality on Γ`D ∩∆D,≥m now follows from

Γ`D ∩∆D,≥m = (Γ`D ∩ πm) ∪ (Γ`D ∩∆D,≥m+1). (27)

Second, we consider the remaining functions β̃mD ∈ TmD . Obviously, it holds that

ϑβ̃mD = ϑβ̃mN `D
= ϑβm, on Γ`D ∩ πm.

Furthermore,

β̃mD =
∑

β̃rD∈P
m+1
D

suppβr∩suppβm 6=∅

λβr(β̂
m)β̃rD on ∆D,≥m+1.

The previous lemma (see (24)) and the induction hypothesis imply

ϑ
( ∑

β̃rD∈P
m+1
D

suppβr∩suppβm 6=∅

λβr(β̂
m)β̃rD

)
= ϑ

( ∑

β̃r
N`

D
∈Pm+1

N`
D

suppβr∩suppβm 6=∅

λβr(β̂
m)β̃rN `D

)
= ϑβ̃mN `D

on Γ`D ∩∆D,≥m+1.

Invoking the decomposition (27) confirms that (26) is satisfied for all β̃mD ∈ TmD . � Lem.9

Now we are able to prove the original statement (23). Applying both Lemmas with
m = `+1 confirms that ϑβ̂`N `D

= ϑβ` = ϑβ̃`D on Γ`D = Γ`D∩∆D,≥` since PN `D = P 1
N `D

= P `+1
N `D

.

Hence, we conclude that the functions β̃`D ∈ T `D possess the required order of smoothness
on ∆D,≥`.
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(ii) We consider a function f ∈ PD. Its restriction to π` has a representation

f =
∑

β`∈B`
λβ`(f) β` =

∑

β`∈B`
λβ`(f) β̃`D on π`, (28)

since β` = β̃`D on π`. We now define

f̃ = f −
∑

β`∈B`
λβ`(f) β̃`D on ∆D. (29)

Clearly, f̃ is equal to zero on π` and satisfies homogeneous boundary conditions on Γ`D. We
observe that f̃ ∈ P`+1

D . Indeed, the definition of the patchwork spline space PD gives f ∈
P`+1
D , and the functions β̃`D ∈ T `D are linear combinations of functions in P`+1

D . According
to the induction hypothesis there exists a representation

f̃ =
∑

β̃kD∈P
`+1
D

λβk(f̃) β̃kD on ∆D,≥`+1. (30)

We consider a function β̃kD ∈ P `+1
D \ S`+1

D in the above sum. The definition of S`+1
D and

Lemma 3 imply that
suppβk ∩ Γ`D 6= ∅.

There exists a facet ξ of πk ∩ π` ⊆ Γ`D with ξ ⊆ suppβk where f̃ satisfies the homogeneous
boundary conditions. Therefore, we can apply Lemma 6 and obtain that λβk(f̃) = 0.

Consequently, only functions in S`+1
D contribute to the representation in (30) and thus,

we can extend this representation to ∆D,

f̃ =
∑

β̃kD∈S
`+1
D

λβk(f̃) β̃kD on ∆D. (31)

Therefore, we can combine equations (29) and (31) to represent f with respect to PD on
∆D,

f =
∑

β̃k∈PD

µβ̃kD
(f) β̃kD on ∆D, (32)

with coefficients

µβ̃kD
(f) =

{
λβ`(f) if k = `

λβk(f̃) otherwise.

Finally, we note that the functions in PD are linearly independent. Indeed, T `D is linearly
independent on π`, since β̃`D = β` on π` and the functions β` are linearly independent on
π`. Moreover, the remaining functions in S`+1

D ⊆ P `+1
D vanish on π` while being linearly

independent on ∆D,≥`+1 according to the induction hypothesis.
(iii) We rewrite Equation (32) by using the definition of the DPB-splines PD and obtain

f =
∑

β̃`D∈T `D

µβ̃`D
(f) β̃`D +

∑

β̃kD∈S
`+1
D

µβ̃kD
(f) β̃kD on ∆D. (33)
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This confirms (21) with respect to the patch B-splines on π` since µβ̃`D
(f) = λβ`(f).

Next we consider the restriction of f to ∆D,≥`+1. On the one hand, it satisfies

f =
∑

β̃kD∈P
`+1
D

λβk(f) β̃kD on ∆D,≥`+1, (34)

according to the induction hypothesis (ii). On the other hand, we may rewrite (33) as

f =
∑

β̃`D∈T `D

λβ`(f)
∑

β̃kD∈P
`+1
D

suppβ`∩suppβk 6=∅

λβk(β̂
`) β̃kD

︸ ︷︷ ︸
(?)

+
∑

β̃kD∈S
`+1
D

µβ̃kD
(f) β̃kD on ∆D,≥`+1,

according to the definition of the truncation operator. Note that none of the functions
β̃kD that appear in the double sum (?) belong to the set S`+1

D of selected functions, since
suppβ` ∩ suppβk 6= ∅ implies that βk 6= 0 on Γ`D. Therefore, comparing the coefficients
with (34) confirms that µβ̃kD

(f) = λβk(f) for β̃kD ∈ S`+1
D .

(iv) First, we show that the basis functions in P `
D = T `D ∪S`+1

D are non-negative on ∆D.
Since S`+1

D ⊆ P `+1
D the induction hypothesis implies that functions in S`+1

D are non-negative
on ∆D,≥`+1. This extends to ∆D as these functions vanish on π` according to the selection
mechanism. The functions in T `D are non-negative on π` since there β̃`D = β` and the
functions β` are non-negative. Moreover, their representation with respect to P `+1

D \ S`+1
D

on ∆D,≥`+1 is a linear combination of non-negative functions with non-negative coefficients.
Second, we note that the partition of unity is obtained by applying (21) to the function

f = 1. �Thm.7

In addition to the patchwork spline space PD we consider the full spline space

FD = {f ∈ Cs(∆D) : f |z ∈ Πp ∀z ∈ Z`, ` ∈ D},

where Πp is the space of tensor-product polynomials of degree p. We obtain the following
result:

Corollary 10. The DPB-splines PD span the full spline space FD.

Proof. Theorem 2.12. of [16] implies that PD = FD. The result then follows immediately
from Theorem 7 (ii). �

Thus, we say that DPB-splines are algebraically complete.

5. Sufficient condition and examples

A hierarchy of patches π` and spaces V`, for ` = 1, . . . , N , will be called feasible if the
corresponding patchwork spline space can be equipped with a DPB-spline basis. Therefore,
in order to analyze whether a given hierarchy is feasible, we have to check if NNC, IPC
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and SIC are satisfied for all patches and corresponding spline spaces. Verifying the latter
two assumptions might be expensive since it requires us to go through all patch B-splines.
However, for certain types of patches we can formulate conditions for IPC and SIC in the
bivariate case, i.e., d = 2, that analyze only the boundary of a patch.

We define a lower level boundary component (LLBC) of a patch π` as a connected
component of

πk ∩ π` 6= ∅, k < `.

Clearly, IPC and SIC are satisfied for all patches with less than two LLBCs.
In addition to this simple observation, we present a necessary and sufficient condition

for a certain class of patches. A fat patch π` is the union of mutually disjoint boxes
composed of at least p1× p2 cells in Z`, where vertically/horizontally adjacent boxes share
a horizontal/vertical boundary segment of at least p1/p2 knot spans. We consider single
LLBCs of π` and connected components of Γ`. These parts of the boundary are denoted
as critical boundary components if they are enclosed by LLBC(s) at both ends.

Corollary 11. IPC and SIC are satisfied for a fat patch π` if and only if the width or the
height of each critical component δ equals at least p1 or p2 knot spans with respect to V`.

Proof. First, we show that the condition on the critical components is sufficient. The
intersection suppβ` ∩ ∂π`, for β` ∈ B` is either empty, a horizontal or vertical line segment
that is p1 or p2 knot spans long with respect to V` or a polygon composed of a horizontal
and vertical line segment with a maximum length of p1 and p2 knot spans, respectively.
Therefore, if a patch B-spline β` intersects two LLBCs of π`, γ1 and γ2, then it holds that
suppβ` ∩ γ1 ∩ γ2 6= ∅. This implies IPC and SIC for π`.

Second, we prove that the condition is also necessary for IPC and SIC. We assume that
there exists a critical boundary component δ that is joined to the LLBCs γk ⊆ πk and
γm ⊆ πm at each end and does not meet the required assumption. Consequently, there
exists a patch B-spline β` ∈ B` such that

suppβ` ∩ γk 6= ∅ and suppβ` ∩ γm 6= ∅.

If k = m then SIC is not fulfilled. For k 6= m IPC can be only satisfied if there is another
LLBC γ′ of πk or πm such that suppβ` ∩ γm ∩ γ′ 6= ∅ or suppβ` ∩ γk ∩ γ′ 6= ∅, respectively.
However, then SIC is violated either for level k or m. �

Example 3. We consider several examples of hierarchical meshes for spline spaces of degree
p = (2, 2) and discuss if the hierarchies possess a DPB-spline basis, see Fig. 11. Note that
IPC and SIC are automatically satisfied for a patch π` if it shares its boundary with higher
level patches only, e.g., as it is the case for the first patch π1. Furthermore, if there exists
only one LLBC with respect to a level ` then IPC and SIC are satisfied for π`. Moreover,
we analyze if we can construct a TPB-spline basis, see [40], or a THB-spline basis, see [14],
on these meshes. A hierarchy is feasible for THB-splines if the spline spaces of all levels
are nested. For TPB-splines the FSC and CBA assumption, see [40], have to be fulfilled
in order to obtain a basis. Note that CBA is satisfied if all patches are aligned with the
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knot lines of the corresponding spline space. We observe that the new construction of
DPB-splines complements the other two bases.

H1
H2

H3

H4

H5
H6

H7

DPB-splines

THB-splines

TPB-splines

Hierarchy H1 Hierarchy H2 Hierarchy H3 Hierarchy H4

Hierarchy H5 Hierarchy H6 Hierarchy H7

Figure 11: Venn diagram and hierarchical meshes for DPB-, TPB- and THB-splines.

Although there exist hierarchies that are valid for TPB- and not for DPB-splines we
conjecture that this set is rather small compared to the set of hierarchies that possess a
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DPB- and no TPB-spline basis. The following experimental example supports this as-
sumption.

Example 4. We consider the regular subdivision of the unit square into 4×4 patches and
randomly assign values from 0 to 3 to each patch. The spline spaces of the patches remain
unchanged, are refined dyadically in x1-direction, in x2-direction and in both directions for
the values 0, 1, 2 and 3, respectively. The patches are sorted according to these values,
and patches with the same value are ordered randomly. We compute 120, 000 samples of
such random hierarchies and analze how many of them are feasible for TPB- and DPB-
splines. The results are reported in Table 1. Most of the samples (114, 605) do not satisfy
NNC and are unsuitable for all constructions. From the remaining 5, 395 hierarchies, 588
(approx. 11%) can be equipped with a DPB-spline basis, but only 4 (approx. 0.07%)
admit a TPB-spline basis. 3 hierarchies are valid for TPB- and DPB-splines. The same
experiment was performed for bicubic splines, on 3×3 patches with triadic refinement, see
Table 1 last row. Finally, we note that very few (2 and 231) of the 120, 000 samples did
not use anisotropic refinement, i.e., not the refinement values 1 and 2.

nested only DPB only TPB both

p = (2, 2), 4× 4 patches 5, 395 588 4 3

p = (3, 3), 3× 3 patches 25, 169 11, 636 2, 011 1, 757

Table 1: Example 4 – Experimental quantification of patch structures suitable for TPB- and DPB-splines.

6. Iterative refinement

We consider bivariate tensor-product spline spaces of fixed degree p = (p1, p2) defined
by uniform knot vectors obtained by performing ri-times pi-adic refinement in i–th direc-
tion, i = 1, 2. To be more precise, the spline space

Sr = S(r1,r2)

possesses the knot vector

(0, . . . , 0,
1

(pi)ri
, . . . ,

(pi)
ri − 1

(pi)ri
, 1, . . . , 1),

in the i–th coordinate direction. These spline spaces are collected in a set, which we denote
by S. A local spline space V` is then defined as the restriction of a tensor-product spline
space V̂` ∈ S to the corresponding patch. Consequently, there is a function

r : {1, . . . , N} → N× N
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such that V̂` = Sr(`) and
V` = Sr(`)|π` .

The knot lines of a spline space Sr divide the domain into a set of cells Ẑr. Hence, we
obtain the local cell set

Z` = Ẑr(`)|π` .
We introduce a set of macro elements Mr, which contains the disjoint axis-aligned boxes
consisting of p1 × p2 cells in Ẑr. To be more precise, the set Mr contains the p1 × p2

subgrids of Ẑr with lower left corners

(
mp1

(p1)r1
,
np2

(p2)r2
), for m,n ∈ Z.

We consider an iterative refinement procedure consisting of several refinement steps.
The input is a hierarchy where the patches are equal to the macro elements of an initial
tensor-product spline space Sr. In each refinement step we add knots to the spline spaces of
certain marked patches, thereby generating patches with finer spline spaces. A refinement
indicator marks the cells that should be refined and a direction indicator specifies the
refinement direction, i.e., whether we perform knot insertion in the first (or u-) coordinate
direction, second (or v-) coordinate direction, or both. We refine such that the tensor-
product spline spaces of neighboring patches are nested. As a consequence the refinement
is not according to the direction indicator in some cases. Furthermore, all cells of a marked
patch will be refined to the same spline space. Hence, a marked patch is replaced by at
least p1, p2 and p1 × p2 patches, which are again macro elements, for refinement in u-, v-
and both directions, respectively. After the knot insertion we sort the patches of the new
hierarchy lexicographically with respect to (r1 + r2, r2). The ordering of the patches that
belong to the same global spline space is chosen arbitrarily.

Figure 12: Example 5 – Illustration of one refinement step.

Example 5. We consider the hierarchy in Fig. 12 on the left for p = (2, 2). The first
five patches are macro elements of the spline space S(3,3), followed by eight macro ele-
ments from M(4,3) and eight elements from M(3,4). The last 12 patches are elements of
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M(4,4). The refinement and direction indicators mark certain patches for refinement as
illustrated in the middle picture. Blue, red and green cells are marked for refinement in
u-, v- and both directions, respectively. The image on the right shows the resulting mesh
after the corresponding knot insertion. Note that the macro element with lower left corner
(1

4
, 3

4
) is marked for refinement in v-direction, which would result in non-nested spaces of

neighboring patches. Therefore, we refine this patch in both directions instead. ♦

A hierarchy that is constructed by this refinement procedure is feasible for DPB-splines.
NNC is satisfied. Moreover, all patches are boxes of size p1 × p2 and according to the
refinement mechanism, a patch shares an entire edge of its boundary either with a single
patch of lower level or several patches of higher levels. Therefore, Corollary 11 guarantees
that IPC and SIC are satisfied for all levels.

Furthermore, the so-constructed hierarchies also admit (T)PB-spline bases. Since all
patches are aligned with the knot lines of the corresponding spline spaces CBA is satisfied.
Moreover, the tensor-product basis functions β̂` that do not vanish on the corresponding
patch π` intersect only with neighboring patches of lower level or higher level patches where
the corresponding spline space is a superspace of V̂`. This implies that FSC is satisfied.

We use the refinement procedure in an iterative algorithm for approximating data with
a DPB-spline surface by a standard regularized least-squares fitting, cf. [19]. The algo-
rithm stops if the error does not exceed a user-defined threshold ε in a certain percentage
of data points (usually between 95% and 99%) or the numbers of degrees of freedom or
iteration steps exceed a predefined maximum.

One iteration of the refinement algorithm for least-squares fitting consists of the follow-
ing steps:

• Refinement indicator: We mark all patches that contain points with an error exceed-
ing a certain threshold.

• Direction indicator: The desired refinement direction for the marked elements is
determined by a local-fitting method, see [40]. The direction indicator δ(µ) takes the
values 1, 2 or 3 for refinement in u-, v- and (u, v)-direction, respectively.

• Determining a refinement order: We sort the marked macro elements µ ∈Mr(`), for
` = 1, . . . , N , lexicographically with respect to

(r1(`) + r2(`), r2(`), δ(µ)).

The elements are then refined one by one in this order.

• Refinement of the elements: The corresponding spline space of an element µ ∈Mr(`)

is refined to a new spline space Vr(k) that satisfies

(i) ri(k) ≥ ri(`), for i = 1, 2,

(ii) Sr(k) is nested with the current spline spaces of neighboring patches, and
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no. of dof % of dof max. error avg. error overall time

SPR – 1 patch 13, 579 100% 6.9e−4 2.24e−5 8min 34sec

SPR – 4 patches 21, 607 159% 1e−3 2.28e−5 1h 8min

MER – (2, 2) 9, 732 71.7% 6.4e−4 2.44e−5 5min 46sec

MER – (3, 3) 9, 732 71.7% 6.4e−4 2.44e−5 5min 40sec

MER – (4, 4) 9, 732 71.7% 6.4e−4 2.44e−5 4min 52sec

Table 2: Table for Example 6

(iii) |r1(k)− r2(k)| ≤ 3.

Note that the property (iii) controls the aspect ratio of the elements. If refinement
according to the direction indicator does not result in a space that fulfills these prop-
erties then we choose the smallest r(k) with respect to the lexicographical ordering
(r1 + r2, r2) that satisfies them.

• Final ordering: We sort all macro elements lexicographically with respect to (r1 +
r2, r2) and apply the selection mechanism.

Example 6. We approximate the data set of Example 6 in [40] by biquadratic splines,
i.e., p = (2, 2), and compare the hierarchies obtained from the macro element refinement
(MER) and the original, simple patch refinement (SPR) algorithm presented in [40].

For both algorithms we choose the initial spline space S(3,3), thus we obtain 4 × 4
initial macro elements/patches for MER. For SPR, the initial number of patches is user-
defined and we decide to start from a single patch. The regularized least-squares fitting
is solved with smoothness parameter λ = 1d − 7 and the iteration stops if the error in
≥ 98% of the points is lower or equal to the threshold ε = 1e − 4. Fig. 13 depicts the
resulting surface and meshes of both algorithms. Table 2 presents the number of degrees
of freedom, some error statistics and computation times for both methods in rows 1 and
4, respectively. We observe that MER achieves a similar good result with fewer degrees
of freedom than SPR. Furthermore, the sorting and possible additional refinement that
is necessary for generating a feasible hierarchy in SPR is not required by MER, which is
reflected in the lower computational times. The more patches are present in a hierarchy
the more pronounced difference becomes.

Moreover, we observed that SPR is very sensitive to the choice of the initial setting. If
we choose the same initial spline space but start from four patches we obtain significantly
worse results, see Table 2, second row. Therefore, in order to obtain good results in terms
of number of degrees of freedom and computation time it is crucial to find a suitable
initial setting for SPR. In contrast to this, the initial setting for MER is defined by the
initial spline space only. We obtained nearly equivalent results for sufficiently coarse initial
layouts, see row 3 and 5 of Table 2. ♦
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Figure 13: Example 6 – Approximated surface (top) and corresponding meshes for SPR (left) and MER
(right). Patch boundaries are black. The knot lines of a spline space S(r1,r2) are colored according to the
dominant refinement direction, from blue (r1 > r2) via green (r1 = r2) to red (r1 < r2).
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Figure 14: Example 7 – Approximated surface (left) and reflection line analysis for SPR (middle) and
MER (right).

Example 7. We reconstruct a real-world aircraft engine blade from ≈ 300, 000 data points,
which were obtained by optical scanning. Many industrial applications require C2-smooth
surfaces and thus, the data set is approximated by bicubic splines. We set λ = 5d − 7,
ε = 2d − 5 and stop the iteration if ≥ 95% of the data points are below the threshold.
Again we compare the results of the SPR and MER algorithm, see Fig. 14 and 15 for
images of the geometry and the meshes and Table 3 for statistics.

The SPR algorithm uses dyadic knot refinement and starts from the initial hierarchy
consisting of 8 patches with initial spline spaces defined by the periodic knot vectors
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in both directions. The resulting mesh from the iterative fitting process is depicted in
Fig. 15 (left) and additional information is given in the first row of Table 3. Changing the
initial setting for SPR again leads to a drastically different result, see row 2 of Table 3.

For MER we start from the initial spline space S(3,3) with periodic knot vectors and
perform triadic knot refinement. The resulting mesh is depicted in Fig. 15 on the right. As
before, the algorithm yields a result with fewer degrees of freedom and less computation
time but comparable errors, see fourth row of Table 3. Furthermore, MER leads to a surface
with a better visual quality compared to the result obtained by SPR, see Fig. 14. The
SPR based surface (center) possesses oscillations that are not present or less pronounced
in the MER based surface (right). Choosing the initial spline spaces S(2,2) and S(4,4) again
leads to similar results, see rows 3 and 5 of Table 3. Although the numbers of degrees of
freedom vary, all three initial settings need similar computation time and lead to similar
approximation errors. ♦
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Figure 15: Example 7 – Meshes for SPR (left) and MER (right).

no. of dof % of dof max. error avg. error overall time

SPR – 16 patches 19, 823 100% 5.0e−5 3.32e−6 17min 38sec

SPR – 64 patches 31, 184 157.3% 1.1e−3 3.51e−6 54min 40sec

MER – (2, 2) 9, 774 49.3% 5.6e−5 3.84e−6 11min 47sec

MER – (3, 3) 13, 284 67% 5.6e−5 3.33e−6 10min 20sec

MER – (4, 4) 24, 498 123.6% 5.6e−5 3.01e−6 14min

Table 3: Table for Example 7
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7. Conclusion

The definition of a TPB-spline basis requires a strong nestedness assumption, which
limits the choice of possible refinement strategies. The new construction of DPB-splines,
which was presented in this paper, substantially increases the flexibility for anisotropic
refinement. The use of locally defined, decoupled basis functions enables the definition of
a basis under three assumptions (NNC, IPC and SIC) that affect only the direct neighbor-
hood of a patch. In particular, only the spaces associated with neighboring patches have
to be nested. Furthermore, for a certain class of patches we identified a particularly simple
sufficient condition for IPC and SIC.

The DPB-splines possess the required order of smoothness, they span the patchwork
spline space, form a non-negative partition of unity and preserve the coefficients of the
local B-spline representations. Moreover, the DPB-splines are algebraically complete, i.e.,
the patchwork spline space is equal to the full spline space. This property is not necessarily
satisfied for the (T)PB-splines. Although there exist some hierarchies that are valid for
TPB-splines but cannot be equipped with a DPB-spline basis, this set is rather small
compared to the hierarchies that are feasible for DPB-splines and do not allow the definition
of a TPB-spline basis.

Finally, the definition of DPB-splines inspired us to introduce a new refinement algo-
rithm for least-squares fitting. The resulting hierarchies admit a PB-, TPB- and DPB-
spline basis. Furthermore, this macro element-based refinement offers the significant ad-
vantage that a feasible hierarchy is automatically generated without the additional sorting
and refinement that is required for the previous SPR algorithm presented in [40]. This en-
abled us to reduce the computation time and the number of degrees of freeedom compared
to SPR, while preserving the high quality of the results.
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