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Abstract In this work, we develop a specialized quadrature rule for trimmed do-
mains, where the trimming curve is given implicitly by a real-valued function on
the whole domain. We follow an error correction approach: In a first step, we obtain
an adaptive subdivision of the domain in such a way that each cell falls in a pre-
defined base case. We then extend the classical approach of linear approximation
of the trimming curve by adding an error correction term based on a Taylor expan-
sion of the blending between the linearized implicit trimming curve and the original
one. This approach leads to an accurate method which improves the convergence
the approximation error by one order. It is at the same time efficient, since essen-
tially the computation of one extra one-dimensional integral on each trimmed cell is
required. Finally, the method is easy to implement, since it only involves one addi-
tional line integral and refrains from any point inversion or optimization operations.
The convergence is analyzed theoretically and numerical experiments confirm that
the accuracy is improved without compromising the computational complexity.

1 Introduction

A common representation of a Computer-Aided Design (CAD) model is a boundary
representation (B-rep), which typically consists of trimmed tensor-product NURBS
patches. A trimmed surface patch consists of a tensor-product surface and a set of
trimming curves on the surface that represent the boundary of the actual surface.
Therefore, it represents only a part of the full tensor-product surface yet no explicit
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parametric representation is available. In this paper we are interested in applying
numerical integration on a trimmed surface patch.

Computing integrals over trimmed domains both efficiently and accurately re-
mains a challenging problem, notably for use in the frame of isogeometric analysis
(IgA) [8]. The latter computational framework aims at a unification of the repre-
sentations used in CAD and in numerical simulation, therefore operating directly
on trimmed patches. The reader is referred to [15] for a recent review on trimming
in CAD and IgA. We remark that different CAD representations are possible, e.g.
subdivision surface-based models or T-spline models, see [1, 2, 9].

Multiple challenges arise for IgA on trimmed domains. One issue is the efficient
coupling between adjacent trimmed patches. To this end, a finite cell method with
weak coupling has been proposed in [19], a tearing and interconnecting approach
was recently studied in [27] as well as Discontinuous Galerkin (DG) methods [6, 7,
26]. Another issue is the numerical stability of the trimmed basis functions, since
basis functions with a tiny support can appear around the trimmed boundary. Several
modified bases have been considered, such as immersed B-splines [20] and extended
B-splines [14] to overcome the issue. Finally, the problem of applying numerical
quadrature on a trimmed patch is a challenge in its own right.

One first approach to integrating over trimmed surfaces is to place quadrature
points on the full surface and set the weights of the points lying outside the trimmed
domain to zero. However, this method has no guarantees and the integration error
cannot be controlled easily. In engineering practice local adaptive quadrature is used
on top of it, that is, subdivision is performed around the trimmed region and quadra-
ture nodes are placed in each sub-cell [5, 10, 23]. This approach can generate an
extensive number of quadrature points, thus posing efficiency barriers.

Another approach is to perform a reparameterization (either globally, or locally at
the element level), also known as “untrimming”; this puts more effort in the geomet-
ric side and results in tensor-product patches, which can be handled in an efficient
way [22]. However, it is known that exact reparameterization is not feasible and
approximate solutions result in cracks or overlaps in the model which require spe-
cial treatment, e.g. by means of DG methods [6, 26]. In [11], the authors use base
cases for the trimmed elements and perform local untrimming, using the intersection
points of the trimmed curve and the boundary; see also [24] for some applications
of this machinery in optimization. In [21] a local untrimming on the element level
is performed by a projection method, which can be interpolation or least-squares
fitting.

When the trimming curves are complicated and have high degree, it is typical
to compute a piecewise linear approximation of the boundary to simplify further
processing [1, 3, 12, 18]. However, when it comes to numerical integration, the
geometry approximation error accumulates in the final result, and deteriorates the
overall approximation order. Alternatively, in [16] the linearization is avoided, and
a quadrature rule is constructed for each trimmed element by solving a moment-
fitting, non-linear system to obtain quadrature nodes and weights, which are all
contained inside the domain.
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In the present work we develop an efficient and accurate quadrature rule for the
approximation of integrals over trimmed domains. The trimming curve is given im-
plicitly by a real-valued level function on the whole domain. This does not impose
any restrictions, since any trimming curve can be converted into this format by em-
ploying implicitization techniques, which can be either exact or approximate ones,
see, e.g., [4, 25]. Our method is based on an error correction approach. In a first step,
we obtain an adaptive subdivision of the domain in such a way that each cell falls
in a predefined base case. We then extend the classical approach of linear approxi-
mation of the trimming curve by adding an error correction term based on a Taylor
expansion of the blending between the linearized implicit trimming curve and the
original one.

In terms of accuracy, the method improves the local approximation error in each
cell by two orders of magnitude compared to the piecewise linear approximation
of the trimming curve, thus providing an extra order of convergence globally. In
particular, cubic order of convergence is achieved with a negligible additional com-
putational cost. The efficiency of the method is achieved by the fact that it requires
solely the evaluation of the trimming function at the vertices of the cells and the
quadrature nodes, and refrains from any kind of point inversion or non-linear solv-
ing. Furthermore, our method is easy to implement, since the resulting nodes for the
correction term are simply one-dimensional Gauss nodes and their corresponding
weights are given by a direct computation. Moreover, we do not need to test for
quadrature points outside the integration domain or treat them in a different way.
Overall, it is straight-forward to upgrade existing codes to incorporate our method.

In the next section, we state the problem of trimmed quadrature with a implicitly
defined trimming curve. In Section 3 we explain the first step of the method, the
subdivision of the domain into quadrature cells belonging to certain base cases.
Section 4 deals with the piecewise linear approximation of the trimming function
which is then extended by the first order error correction in Section 5. We analyze the
convergence behavior of our method theoretically and experimentally in Sections 6
and 7, respectively.

2 Problem formulation

Throughout this paper, we consider integrals of bivariate functions on trimmed do-
mains. More precisely, we assume that a sufficiently smooth function

f : [0,1]2→ IR (1)

is given, which is defined on the entire unit square. In addition, we restrict the unit
square by trimming with an implicitly defined curve τ(x,y) = 0, which is defined
by another smooth bivariate function

τ : [0,1]2→ IR. (2)
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This results in the trimmed domain

Ωτ = {(x,y) ∈ [0,1]2 : τ(x,y)≥ 0}. (3)

We seek for quadrature rules that provide approximate values of the integral

Iτ f =
∫

Ωτ
f (x,y)dydx. (4)

These quadrature rules shall take the form

Qτ f = ∑
i

wi f (xi,yi) (5)

with a finitely many quadrature nodes (xi,yi) and associated weights wi. Two com-
ments about this problem are in order:

1. As described in the introduction, this problem originates in isogeometric analy-
sis, where one needs to solve it in order to perform isogeometric discretizations
of partial differential equations on trimmed patches. Typically, the function f
then takes the form

f (x,y) = DB j(x,y)D̄Bk(x,y)K(x,y) (6)

where the functions Bi are bivariate tensor-product B-splines or polynomial seg-
ments thereof and the kernel K reflects the influence of the geometry mapping
(i.e., the parameterization of the computational domain by a NURBS surface)
and the coefficient functions of the PDE. In many situations, this results in a
piecewise rational function f .

2. Usually, the trimming functions in CAD and not given implicity but by low de-
gree parametric curves. It is then possible to convert these curves into implicit
form by invoking suitable implicitization techniques, which can be either exact
or approximate ones, see e.g. [4, 25]

Our approach to finding a quadrature rule consists of two steps. First we subdivide
the domain to reach a certain discretization size, while simultaneously ensuring that
we arrive at a sufficiently simple configuration on each cell. Second we evaluate
the contribution of each cell to the total value of the integral. These steps will be
discussed in the next three sections.

3 Adaptive subdivision of the domain

Given a step size h, we subdivide the domain uniformly until the cell size does not
exceed h. Subsequently, we perform adaptive subdivision until each resulting cell K
is an instance of one of the five base cases depicted in Fig. 1. The resulting set of
quadrature cells will be denoted by K .
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Fig. 1 Sign distributions of the trimming function τ for all five base cases (up to rotations).

More precisely, we use only evaluations of the trimming function at the cell ver-
tices to identify the base cases, similar to the marching cubes algorithm [17]. Con-
sequently, the method does not detect branches of the trimming curve that leave and
re-enter the cell within the same edge. In order to illustrate this fact, Fig. 2 shows
two instances of each trimmed base case.

Zero values at the vertices are treated as positive numbers. Consequently, there
are only two sign distributions that do not represent a base case, see Fig. 3. These
situations are dealt with by uniformly subdividing the corresponding cell. This pro-
cess is guaranteed to terminate if no singularities of the trimming curve are present
(which is always the case in practice).

We summarize our adaptive subdivision approach to the generation of quadrature
cells K in the following algorithm.

• QuadratureCells, input: τ , h > 0
• Initialize the stack S by [0,1]2.
• While S 6= /0 do

– K = S.pop()
– if Size(K)< h and BaseCase(τ,K)

Report K
else

K1, . . . ,K4 = Quadsect(K)
S.push(K1, . . . ,K4)

Fig. 4 shows an instance of quadrature cells generated by the algorithm. The
zero set of the trimming function consists of two parallel lines, which are parallel
to one of the square’s diagonals. The parameter h was chosen as 1

2 . For this specific
instance of τ , the algorithm needs one or two additional subdivision steps at the
northwest and southeast corners of the domain.
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Fig. 2 Two instances of each trimmed base case (curved quadrilateral, triangle and pentagon).
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Fig. 3 Left: Sign distribution that does not represent a base case. Right: Uniform subdivision
(quadsection) of this cell.
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τ00 < 0 τ10 > 0

τ01 > 0 τ11 < 0

Fig. 4 Quadrature cells for h = 1
2 . The trimming curve is shown in blue.

4 Linearized trimmed quadrature

We perform the quadrature individually on each cell K ∈ K . Thus, we need to
approximate the integral ∫

Kτ
f (x,y)dydx, (7)

where
Kτ = {(x,y) ∈ K : τ(x,y)> 0}. (8)

This approximation is trivial for the first two base cases: The value of the integral
equals zero in the first case, and it is approximated by a tensor-product Gauss rule
in the second one.

In order to perform this approximation in the remaining three base cases, we
replace τ by another function σ . That function is chosen such that the integral

∫

Kσ
f (x,y)dydx (9)

over the region
Kσ = {(x,y) ∈ K : σ(x,y)> 0} (10)

enclosed by the zero-level set of σ admits a simple evaluation. This is achieved by
using a linear approximation of τ . For this choice of σ , the level set σ(x,y) = 0 is
simply a straight line segment.

The evaluation (9) by numerical quadrature is based on the intersections of
σ(x,y) = 0 with the boundary of the cell. We determine these intersections by linear
interpolation of the function values of τ at the vertices of the cell. This defines σ up
to a scalar factor. Fig. 5 shows examples for this approximation. For this choice of
σ , the linearized integral 9 belongs to the same base case as the original integral (7).

For the quadrilateral case we proceed as follows: First, we construct a bilinear
parameterization of Kσ . Second, we transform the integral to the associated param-
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eter domain and evaluate its value using Gauss quadrature with n evaluations per
parametric direction, where n is chosen by the user. The triangular case is dealt
with analogously, by using a parameterization with a singularity at the involved cell
vertex. In the pentagonal case, the identity

Kσ = K \K−σ (11)

allows to evaluate (9) by combining results for the untrimmed and the triangular
case.

σ > 0

σ < 0

τ00 < 0 τ10 < 0

τ11 > 0τ01 > 0

σ > 0

σ < 0

τ00 < 0 τ10 < 0

τ11 < 0τ01 > 0

σ < 0

σ > 0

τ00 > 0 τ10 > 0

τ11 > 0τ01 < 0

Fig. 5 A simple approximation of the three trimmed base cases.

The resulting linearized trimmed quadrature rule will be referred to as

LT(h,n), (12)

where h is the maximum cell size and n denotes the number of Gauss nodes. Clearly,
the values generated by the LT rule converge to the true integral as h is decreased.
As we shall see later, however, the rather rough approximation of the quadrature
domain limits the order of convergence.

5 First order correction

We improve the order of convergence of the LT rule by adding an error correction
term for the last three base cases. This term is found by performing a Taylor expan-
sion.

Throughout this section, we consider a fixed trimmed cell

K = [x0,x0 +h]× [y0,y0 +h] ∈K (13)

which is either a quadrangular or triangular base case, see Figure 5. Recall that the
pentagonal case is solved by considering the complementary triangular domain.

Linear blending of the trimming function τ and its linear approximation σ leads
to the subsets
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c0(x)

c1(x)

cu(x)

b0 b1bu(a0 = au = a1)

Fig. 6 Linear blending of τ and σ in the triangular base case.

Kσ+u(τ−σ) = {(x,y) ∈ K : σ(x,y)+u(τ(x,y)−σ(x,y))> 0}, u ∈ [0,1], (14)

that define the function

F(u) =
∫

Kσ+u(τ−σ)

f (x,y)dydx. (15)

It attains the exact value of (4) for u = 1, while the LT rule is based on the approxi-
mate evaluation of F(0). We improve the accuracy by adding a correction term that
is based on the first two terms of the Taylor series

F(1) = F(0)+F ′(0)+R1(1) (16)

of F around u = 0, where R1 denotes the remainder.
In order to compute F ′(0), we observe that the level set of the function obtained

by linear blending defines a function y = cu(x) or x = cu(y) for sufficiently small
values of u, where the projection of the trimming curve onto the x or y axis specifies
the domain

[au,bu], (17)

respectively. If both choices are possible, we choose the one with the larger domain
for u = 0.

Without loss of generality, we consider the first case

[au,bu]⊂ [x0,x0 +h] (18)

where the function satisfies

σ(x,cu(x))+u(τ(x,cu(x))−σ(x,(cu(x)))) = 0, (19)

see Figure 6. By differentiating (19) we observe that



10 Felix Scholz, Angelos Mantzaflaris, and Bert Jüttler

∂
∂u

cu(x) =
−τ(x,cu(x))+σ(x,cu(x))

∂σ
∂y (x,cu(x))+u( ∂τ

∂y (x,cu(x))− ∂σ
∂y (x,cu(x)))

. (20)

The function F in (15) can be rewritten as

F(u) =
∫ bu

au

∫ y0+h

cu(x)
f (x,y)dydx. (21)

Its first derivative thus evaluates to

F ′(u) = −
∫ bu

au

f (x,cu(x))
∂

∂u
cu(x)dx

− d
du

au

∫ y0+h

cu(au)
f (au,y)dy+

d
du

bu

∫ y0+h

cu(bu)
f (bu,y)dy (22)

The integration limit satisfies bu = x0 +h or

cu(b(u)) = y0 +h. (23)

Consequently, the third term in (22) vanishes since either the integral or the factor
in front of it take value zero. Similarly, the second term vanishes as well.

Finally we use (20), (22) and the fact that σ vanishes on the graph of c0,

σ(x,c0(x)) = 0, (24)

to rewrite the first order correction term

F ′(0) =
1

∂
∂y σ

∫ b0

a0

f (x,c0(x))τ(x,c0(x))dx (25)

as a univariate integral over the linearized trimming curve. An approximate value is
computed using a Gauss rule with k quadrature nodes.

The value of the correction term depends strongly on the choice of the derivative
of the linearized trimming function, which we did not discuss so far. We use finite
differences to derive the approximations

∂σ
∂y

=
τ01− τ00 + τ11− τ10

2h
(26)

and
∂σ
∂y

=
τ01− τ00

h
(27)

which we employ in the quadrangular and triangular case, respectively.
The resulting corrected linearized trimmed quadrature rule (with first order cor-

rection term) will be referred to as

CLT(h,n,k), (28)
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where h is the maximum cell size, and n resp. k are the numbers of bivariate resp.
univariate quadrature nodes. In addition, we use

CLTK(h,n,k), (29)

to denote the value contributed by an individual cell K ∈K .
If the trimming function τ is linear and thus σ = τ , then

τ(x,c0(x)) = 0. (30)

Consequently, the correction term (25) vanishes. In this case, CLT and LT give
equivalent results.

6 Convergence result

In this section we will show that the first order error correction in the CLT rule
improves the convergence by one order with respect to the non-corrected LT rule.
More precisely, we will prove this result for a slightly modified version of CLT, ob-
tained by adapting the quadrature cells, which we denote as CLT?. The relationship
between the original and the modified version will be revisited in Section 7.

First we prove two technical lemmas about the local errors in the trimmed cells
of the quadrilateral base case (Lemma 1) and of the triangular base case (Lemma 2).
Second we combine those local results with the known approximation properties of
the employed Gauss rules to estimate the global approximation error in Theorem 1.

Both lemmas consider a cell K = [x0,x0 +αh]× [y0,y0 + βh] and a trimming
function τ defined on it. We consider the error of CLTK as h→ 0. Moreover we
assume that the cell satisfies the assumptions regarding the base cases in the strong
sense, i.e., the trimming curve crosses the boundary in exactly two points.

Lemma 1. Assume that K fulfills the assumptions of the quadrilateral base case in
the strong sense, and the trimming function τ and its linear approximation σ satisfy
the inequalities ∣∣∣∣

∂τ
∂y

(x,y)
∣∣∣∣≥C1 , ∀(x,y) ∈ K (31)

and

‖σ − τ‖L∞(K) ≤ C2h2, (32)
‖∇σ −∇τ‖L∞(K) ≤ C3h (33)

for certain positive constants C1,C2,C3. Then there exists a constant

Cquad(C1,C2,C3, f ) (34)
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which depends solely on these three constants and f , such that the corrected
trimmed quadrature on this cell fulfills for n = k = 2

|Iτ,K f −CLTK(h,2,2) f | ≤Ch4. (35)

Proof. Since by the monotonicity assumption (31) the trimming curve τ(x,y) =
0 can be written as a graph, the same is true for all intermediate curves if h is
sufficiently small. By differentiating (22) and using that both au = x0 and bu =
x0 +αh are constant, we obtain, for all u ∈ [0,1],

F ′′(u) =−
∫ bu

au

∂
∂y

f (x,cu(x))
(

∂
∂u

cu(x)
)2

+ f (x,cu(x))
∂ 2

∂u2 cu(x)dx (36)

We observe that under the assumptions (31) - (33)
∣∣∣∣

∂
∂u

cu(x)
∣∣∣∣=

|τ(x,cu(x))−σ(x,cu(x))|
|(1−u) ∂

∂y σ +u ∂
∂y τ(x,cu(x))|

≤C′h2. (37)

where C′ depends on C1,C2,C3. By differentiating (19) twice we obtain

∂ 2

∂u2 cu(x) =
−2 ∂

∂u cu

(
∂
∂y τ− ∂

∂y σ
)
−u
(

∂
∂u cu

)2 ∂ 2

∂y2 τ

(1−u) ∂
∂y σ +u ∂

∂y τ(x,cu(x))
(38)

and thus using again the assumptions on τ and σ we get
∣∣∣∣

∂ 2

∂u2 cu(x)
∣∣∣∣≤C′′h3 (39)

where C′′ depends again on C1,C2,C3. By estimating the integral by the supremum
we conclude that for all u ∈ [0,1]

F ′′(u)≤C′′′h4. (40)

The result is obtained by combining Taylor’s theorem with the approximation prop-
erties of the employed Gauss rules for the bi- and univariate quadrature. ut
Lemma 2. Assume that K satisfies the assumptions of the triangular base case (in
the strong sense) and that in addition to the assumptions (31)-(33) in Lemma 1 there
is a constant C4 independent of h, such that

∣∣∣∣
∂τ
∂x

(x,y)
∣∣∣∣≥C4 > 0 , ∀(x,y) ∈ K (41)

Then, there exists a constant Ctriangle(C1,C2,C3,C4, f ), such that the corrected
trimmed quadrature on this cell fulfills

|Iτ,K f −CLTK(h,2,2) f | ≤Ctriangleh4. (42)
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Proof. In the triangular case, bu in (22) is not constant but defined implicitly by

cu(bu) = y0 +βh. (43)

For the second derivative of F this means that an additional term appears which
depends on the derivative of bu:

F ′′(u) = −
∫ bu

au

∂
∂y

f (x,cu(x))
(

∂
∂u

cu(x)
)2

+ f (x,cu(x))
∂ 2

∂u2 cu(x)dx

− f (bu,cu(bu))
∂

∂u
cu(bu)

d
du

bu. (44)

In order to estimate the last term in (44), we compute

d
du

bu =−
∂
∂u cu(bu)
∂
∂x cu(bu)

. (45)

Differentiating (19) with respect to x leads to

∂
∂x

cu(x) =−
∂
∂x σ +u

(
∂
∂x τ(x,cu(x))− ∂

∂x σ
)

∂
∂y σ +u

(
∂
∂y τ(x,cu(x))− ∂

∂y σ
) . (46)

Using assumption (41) we conclude
∣∣∣∣

∂
∂x

cu(x)
∣∣∣∣≥C′′′′ > 0 (47)

and thus ∣∣∣∣
d

du
bu

∣∣∣∣≤C′′′′′h2. (48)

Therefore, in view of (37) and (39) the last term in (36) satisfies

f (bu,cu(bu))
∂

∂u
cu(bu)

d
du

bu ≤C′′′′′′h4 (49)

and the result follows. ut

For the analysis, we construct a modified quadrature rule CLT∗ by replacing the
subdivision K of Ω with a new subdivision K ?. We begin by using the subdivision
algorithm stated in Section 3 with a step-size of at most h

2 . If h is small enough, then
all resulting quadrature cells in K are squares of size h

2 . We will obtain K ? by
merging some of the trimmed cells in K .

First, we define the constants C1 and C4 that are to be used in Lemmas 1 and 2 as

C1 =C4 =
1
4

min
τ(x,y)=0

‖∇τ(x,y)‖2. (50)
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If h is sufficiently small this means that each trimmed cell K ∈Ktrimmed is in one
of three classes:

1. Class H (horizontal gradient): In K we have
∣∣∣∣

∂
∂x

τ(x,y)
∣∣∣∣≥C4, and

∣∣∣∣
∂
∂y

τ(x0,y0)

∣∣∣∣<C1 for at least one (x0,y0) ∈ K. (51)

2. Class V (vertical gradient): In K we have
∣∣∣∣

∂
∂y

τ(x,y)
∣∣∣∣≥C1, and

∣∣∣∣
∂
∂x

τ(x0,y0)

∣∣∣∣<C4 for at least one (x0,y0) ∈ K. (52)

3. Class D (diagonal gradient): In K we have
∣∣∣∣

∂
∂x

τ(x,y)
∣∣∣∣≥C4 and

∣∣∣∣
∂
∂y

τ(x,y)
∣∣∣∣≥C1. (53)

This is illustrated in Fig. 7. If a cell K belongs to class H (resp. class V), then also all

Class HClass H

Class V

Class V

Class D Class D

Class D Class D

0

Class V

Class V

Class H Class H

Class D

Class D

Class D

Class D

Fig. 7 Illustration of the regions of cell classes V, H and D. Left: The regions defined by
∇τ(x,y) for (x,y) over the union of the trimmed cells. The black circle has radius 4C1 =
minτ(x,y)=0 ‖∇τ(x,y)‖2. It is visible that ∇τ(x,y) lies outside the square in the middle. Right: An
example trimming curve (an ellipse, shown in blue). The dotted offsets enclose the region that
contains trimmed cells.

of its neighbors are either in class H (resp. V) or in class D. To obtain the modified
subdivision K? we merge all pairs of vertically adjacent cells where one of them is
in class H. Similarly, we merge all pairs of horizontally adjacent cells where one of
them is in class V. The remaining cells are kept. Note that this results in rectangular
cells of maximum size h, since at most two cells will be merged, due to the restricted
range of the gradients.

The modified rule CLT? is obtained by applying CLT to the modified subdivision
K ?.
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Next, we prove the convergence result for the modified rule CLT?.

Theorem 1. Assume τ ∈ C2([0,1]2) such that the constant C1 = C4 as defined in
(50) is positive, and f ∈C4([0,1]2). Then, there exists a constant Cτ, f , such that the
CLT? rule with n = 2 and k = 2 satisfies

|Iτ f −CLT?(h,2,2) f | ≤Cτ, f h3. (54)

Proof. By the construction of CLT?, the subdivision K ? consists of untrimmed
quadrature cells, trimmed quadrilateral cells of classes H, V and D, and trimmed
triangular and pentagonal cells of class D. In the trimmed quadrilateral cells we can
always apply Lemma 1, while in the trimmed triangular cells of class D we can
apply Lemma 2. Moreover, we can treat the trimmed pentagonal cells of class D by
applying Lemma 2 to the complement of the quadrature domain. In both cases the
constants C2 and C3 are obtained by linear approximation of τ . They depend on the
second derivative of τ whose norm is bounded.

The number of trimmed cells does not exceed C5
1
h for some constant C5. More-

over, we can use the same constants Cquad and Ctriangle for all trimmed cells. Indeed,
these constants depend on the same values C1, . . . ,C4, and may use an upper bound
on the derivatives of f . We conclude

∑
K∈K ?

trimmed

|Iτ,K f −CLTK(h,2,2) f | ≤C5 max{Cquad,Ctriangle}h3. (55)

Since we use n = 2 Gauss nodes in each direction for the untrimmed cells, the
local error is bounded by CGaussh5 in each of these cells for some constant CGauss.
Since there are at most 1

h2 untrimmed cells, we have

∑
K∈K ?

untrimmed

|Iτ,K f −CLTK(h,2,2) f | ≤CGaussh3. (56)

The result (54) is implied by these two inequalities, since the various constants
depend on τ and f only. ut

We conjecture that in the triangular base case the influence of the last term in
(44) is canceled by the corresponding term in the adjacent cell. Consequently, in
practice it suffices to use CLT instead of CLT?. This is supported by our numerical
experiments, where CLT is tested.

7 Numerical experiments

We implemented the method in C++ using the G+Smo library [13]. In this section,
we will test the approximation properties of the linearized trimmed quadrature rule
CLT as well as the linearized trimmed quadrature rule LT on a number of trimmed
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geometries. In the numerical experiments we observe that the theoretical error esti-
mate for CLT? (Theorem 1) still holds for the CLT quadrature rule.

7.1 Ellipse

As a first example, we use our method to compute the volume of an ellipse implicitly
defined by

τ(x,y) =− (x−0.5)2

a2 − (y−0.5)2

b2 +1 > 0, (57)

where we set a = 0.45 and b = 0.2 in our experiment. Fig. 8 shows the result of the
subdivision of this ellipse after some steps of refinement. In each cell, the trimming
function was approximated by a linear function as described in Section 4. Note
that in the pentagonal case we integrate over the remaining triangle and subtract
from the full integral. In the left plot in Fig. 9 we show the approximation error

Fig. 8 Subdivision of the ellipse after some steps of refinement with approximate linear trimming
curve in each cell.

for different values of h when computing the area enclosed by the ellipse with the
simple trimmed quadrature LT (h,1) described in Section 4 and with the trimmed
quadrature by first order correction CLT (h,1,2) described in Section 5. We observe
that the first order error correction results in an additional order of convergence with
respect to h, confirming the theoretical result from Theorem 1.

Next, we show the computation times for both quadrature rules in Fig. 10. We
observe that applying the error correction does not result in a significant increase
in complexity compared to the linearized trimmed quadrature. The complexity for
both LT and CLT increases linearly with the number of cells.
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Fig. 9 Absolute error in LT and CLT for the area enclosed by the ellipse.
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Fig. 10 Computation times for the approximation of the area enclosed by the ellipse

7.2 Perforated quarter annulus

In our next example, we will approximate the area of a quarter annulus which is
trimmed with three circles. The quarter annulus is represented exactly as a NURBS
domain. Fig. 11 shows the piece-wise linear approximation of the trimming curve
in the computational and in the parametric domain after some steps of refinement.
Since we perform the computation on the parametric domain, we approximate the
integral ∫

Ωγ◦G
|detJG(x,y)|dydx, (58)

where G : [0.1]2→ IR2 is the NURBS parameterization of the quarter annulus. The
trimming function γ : IR2→ IR on the physical domain is defined as the product of
the implicit representations of the three circles.

In the first plot in Fig. 12 we show the convergence rate of the quadrature rules
with and without error correction. We chose n = 2 Gauss nodes for the linearized
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Fig. 11 Subdivision of the perforated quarter annulus and its corresponding parametric domain
after some steps of refinement with approximate linear trimming curve in each cell.

quadrature and k = 2 Gauss nodes for the correction term. As in the case of the
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Fig. 12 Absolute error in LT and CLT for the area of the perforated quarter annulus for n= 2,k = 2.

ellipse, we observe that the first order error correction term in CLT results in an
additional order of convergence compared to the linearized quadrature in LT.

Since we only use one error correction term, the convergence error cannot be
improved by additional Gauss nodes in the bivariate and univariate quadrature. This
is confirmed by the second plot in Fig. 13 which shows the same experiment as in
the first plot but for n = 3 and k = 3.
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Fig. 13 Absolute error in LT and CLT for the area of the perforated quarter annulus for n= 3,k = 3.

7.3 Singular case: Bicuspid curve

Fig. 14 shows a linear approximation of the bicuspid curve which is an algebraic
curve given by

(x2−a2)(x−a)2 +(y2−a2)2 = 0 (59)

for some a > 0. It has two cusps that hinder the improvement of the approximation
order by the error correction term. In Fig. 15 we show the error convergence of the

Fig. 14 Subdivision of the bicuspid with approximate linear trimming curve in each cell.

approximation of the area enclosed by the bicuspid, where the reference value was
computed with a lower value of h. We observe that the error correction in CLT does
not improve the convergence rate in this case, however, the absolute error is lower.
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