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Abstract

In this paper, we develop multigrid solvers for the biharmonic problem in the
framework of isogeometric analysis (IgA). In this framework, one typically sets
up B-splines on the unit square or cube and transforms them to the domain
of interest by a global smooth geometry function. With this approach, it is
feasible to set up H?2-conforming discretizations. We propose two multigrid
methods for such a discretization, one based on Gauss Seidel smoothing and
one based on mass smoothing. We prove that both are robust in the grid size,
the latter is also robust in the spline degree. Numerical experiments illustrate
the convergence theory and indicate the efficiency of the proposed multigrid
approaches, particularly of a hybrid approach combining both smoothers.
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1. Introduction

Isogeometric analysis (IgA) was introduced around a decade ago as a new
paradigm to the discretization of partial differential equations (PDEs) and has
gained increasing attention (cf. [1] for the original paper and [2] for a survey
paper). The idea of IgA — from the technical point of view — is to use B-spline
spaces or similar spaces, like NURBS spaces, to discretize the problem.

In contrast to standard C°-smooth high-order finite elements, the introduc-
tion of discretizations with higher smoothness on general computational domains
is not straight forward. In IgA, splines are first set up on the unit square or the
unit cube, which is usually called the parameter domain. Then, a global smooth
geometry transformation mapping from the parameter domain to the physical
domain, i.e., the domain of interest, is used to define the ansatz functions on
the physical domain.
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Such an approach allows to construct arbitrarily smooth ansatz functions.
So, we easily obtain H?2-conforming discretizations which can be used as con-
forming discretizations of the biharmonic problem, which is for example of inter-
est in plate theory (cf. [3]), Stokes streamline equations (cf. [4]), or Schur com-
plement preconditioners (cf. [5, 6]). For the latter, also the three dimensional
version of the biharmonic problem is of interest. Such H2-conforming discretiza-
tions are hard to realize in a standard finite element scheme. One option is the
Bogner-Fox-Schmit element, which requires a rectangular mesh, another option
is the Argyris elements for triangular meshes. For such H?2-conforming elements,
besides various kinds of other preconditioners (cf. [7] and references therein),
also multigrid solvers have been proposed (cf. [8]). As alternative, multigrid
solvers for various kinds of mixed or non-conforming formulations have been
developed (cf. [9, 10, 11] and references therein).

In this paper, we develop iterative solvers for conforming Galerkin discretiza-
tions of the biharmonic problem in an isogeometric setting. Multigrid methods
are known to solve linear systems arising from the discretization of partial differ-
ential equations with optimal complexity, i.e., their computational complexity
grows typically only linearly with the number of unknowns. In an isogeometric
setting, multigrid and multilevel methods have been discussed within the last
years (cf. [12, 13, 14, 15, 16]). It was observed that multigrid methods based
on standard smoothers, like the Gauss Seidel smoother, show robustness in the
grid size within the isogeometric setting, their convergence rates however dete-
riorate significantly if the spline degree is increased. This motivated the recent
publications [15, 16]. In the latter, a subspace corrected mass smoother was
introduced, based on the approximation error estimates and inverse inequalities
from [17].

The present paper is a continuation of [17] and [16]. We propose two multi-
grid methods for the linear system resulting from the discretization of the bi-
harmonic problem, one based on Gauss Seidel smoothing and one based on a
subspace corrected mass smoother. We prove that both are robust in the grid
size, the latter is also robust in the spline degree. For this purpose, non-trivial
extensions to both previous papers are required. [17] covers the approximation
with functions whose odd derivatives vanish on the boundary; an extension to
functions whose even derivatives (including the function value itself) vanish on
the boundary might be straight-forward, however, for the first biharmonic prob-
lem we need a combination of both. A straight-forward extension of [16] would
require full H* regularity, which cannot even be assumed on the unit square
(cf. [18]). So, we only require partial regularity (Assumption 2) and derive the
convergence results using Hilbert space interpolation.

We give numerical experiments both for domains described by trivial and
non-trivial geometry transformation in two and three dimensions. We ob-
serve that the subspace corrected mass smoother outperforms the Gauss Seidel
smoother for significant large spline degrees. The negative effects of the geom-
etry transformation to the subspace corrected mass smoother, which have also
been observed for the Poisson problem, are amplified in case of the biharmonic
problem. Approaches to master these effects are of particular interest for the bi-



harmonic problem. We propose a hybrid smoother which combines the strengths
of both proposed smoothers and works well in our numerical experiments (cf.
Section 6.3).

The remainder of the paper is organized as follows. We introduce the model
problem and its discretization in Section 2. Then, in Section 3, we develop the
required approximation error estimates. In Section 4, we set up a stable splitting
of the spline spaces. In Section 5, we introduce the multigrid algorithms and
prove their convergence. Finally, in Section 6, we give results from the numerical
experiments and draw conclusions.

2. Preliminaries

2.1. Model problem

In this paper, we consider the first biharmonic problem as model problem,
which reads as follows. For a given domain  C R? with piecewise C?-smooth
Lipschitz boundary I' = 02 and a given source function f, find the unknown
function u such that

A2u=f in Q,
u=0 on T, (1)
Vu-n=0 on T,

where n is the outer normal vector; for simplicity, we restrict ourselves to ho-
mogenous boundary conditions. Our proposed solver can be extended to other
boundary conditions, namely to the second and the third biharmonic problem,
cf. Remarks 2 and 3.

Following the principle of IgA, we assume that the computational domain 2
is represented by a bijective geometry transformation

G:0-Q (2)
mapping from the parameter domain Q:= (0,1)? to the physical domain €.
The variational formulation of model problem (1) is as follows.

Problem 1. Given f € L?(Q), find u € V := H3 (Q) such that
(Au, AU)LQ (Q) - (f, U)Lz (Q) V’U S V. (3)
—_——
(u, V) gy =

Here and in what follows, L? and H" denote the standard Lebesgue and
Sobolev spaces with standard inner products (-,-)rz, (+,+)mr, norms | - ||z,
I - |z~ and seminorms |- |gr = (-, )}ﬁ HZ (Q) is the standard subspace of
H?, containing the functions where the values and the derivatives vanish on the

boundary, i.e.,

H{(Q)={veH*(Q)|v=Vv-n=0onT}.



Note that the inner products (-,-)m2(q) and (-,-)g(q, coincide on HZ ()
(cf. [19]), i.e.,

(u7 U)B(Q) = (’LL, v)HQ(Q) vuv RS HOZ(Q) (4)

Let (-,-) BQ) be the inner product obtained by removing the cross terms from
the inner product (-, ')8(9)7 ie.,

M=

(uv U)E’(Q) = (azkzku7 aIkaU)LQ(Q) : (5)

b
Il

1

Here and in what follows, 0, := a% and Oy := 0,0y and 0, := aaTr,,. denote
partial derivatives.

Lemma 1. The inner products defined in (3) and (5) are spectrally equivalent,
i.e.,
(u, )50y < (U, W)pq) < d(u,u)gq) Yue HZ(Q).

Proof. Using the Cauchy-Schwarz inequality and ab < %(a2 +b?), we obtain

d d
”uH%(Q) = Z Z (aﬂﬂkﬂﬂkua 811@“)[,2(52)
k=1 i=1
L2
2 2
<3 ZZ (||8a:kzku|\L2(Q) + ||5mzu||L2(Q)) = djull 30y
k=1 i=1

which shows one direction. Using the boundary conditions and (4), we obtain

d
||u||z23(9) = ||UH3{2(Q) = ||UH%(Q) + Z Z (amkmlu’al‘kmlu)LQ(Q)’
k=1le{1,...,d}\{k}

>0

which shows the other direction. O

2.2. Spline space

We consider standard tensor product B-spines with maximum continuity
(see, e.g., [20]). Let the interval (0,1) be subdivided into m € N elements of
length h = 1/m. The space of splines of degree p € N := {1,2,3,...} with
maximum continuity is defined by

SI,’}L(O, 1) = {u S Cp71 (0, 1) : u|((i,1)h,ih) e pr V] = 1, cen m} N

where CP~1 (0, 1) is the space of all p— 1 times continuously differentiable func-
tions on (0,1) and PP is the space of all polynomials with degree at most p. We
use the standard B-splines with open knot vector as basis for Sy, 5(0,1). The
dimension of S, ,(0,1) is n := dim Sy, ,(0,1) = m + p. We will from time to



time omit the subscripts p and h of a spline space Sy, ;(0,1) and write S(0, 1)
or just S. For higher dimensions d > 1, we use the tensor product splines

Spn() =S, 1(0,1)®...®5,4(0,1),

defined over Q = (0,1)%. For notational convenience, we assume that all of
those univariate spline spaces .S, ;, have the same spline degree p and the same
number of elements m, however, this in not necessary and the results in this
paper can easily be generalized to the case with different p and m.

Based on the spline space on the parameter space, we define the spline space
on the physical space using the standard pull-back principle as

Spn() ={u : uoG € S,,(Q)},

where G is the geometry transformation (2). We assume that the geometry
transformation is sufficiently smooth such that the following estimate holds.

Assumption 1. Assume that there exist constants o > 0 and @ such that
allull s < luo Gllyug <@ lulmie Yue HIS), g {2,3).

We discretize the Problem 1 using the Galerkin principle as follows.

Problem 2. Given f € L*(Q), find u € Vi, = S9,(R) := H3 (Q) N Sp(2)
such that
(u>v)B(Q) = (f7 U)Lz(g) Yo eV, (6)

By fixing a basis for the space Sgﬁ(Q), we can rewrite the Problem 2 in
matrix-vector notation as

Brun = fa, (7)

where Bj, is a standard stiffness matrix, up is the representation of the cor-
responding function u with respect to the chosen basis and the vector f, is
obtained by testing the right hand side functional (f,-)z2(q) with the basis
functions.

For convenience, we use the following notation.

Notation 1. Throughout this paper, c is a generic positive constant independent
of h and p, but may depend on d and G.

2.3. Regularity

In the following sections, we use Aubin-Nitsche duality arguments for show-
ing the desired error estimates. This requires that the following assumption
holds.

Assumption 2. For a given f € H=(Q), the solution u € HZ () of the first
biharmonic problem (1) satisfies

ue H*(Q) and lull s ) < cllflla-1(0)-



Such a result is satisfied for convex polygonal domains (cf. [18]). It is worth
noting that this implies that the result also holds for the parameter domain
Q= (0,1)2

As we only rely on a partial regularity result, we use Hilbert space interpo-
lation (cf. [21, 22]) to derive our estimates. defined, e.g., with the K-method, is
a Hilbert space with norm || - [|{4, 4,],- Applied to Sobolev spaces H™(£2) and
H™(Q), we obtain

[ - ||[2Hm(Q),Hn(Q)]9 =" ||§1<1—9>m+en(9)7 (8)

see [21, Theorem 6.4.5], applied to scaled Hilbert spaces A; and yAy with a
scaling parameter v > 0, we obtain

0
I 14 are = VI 1y a0 (9)
and applied to the intersections of two Hilbert spaces A; N Ay with norm
I Winas =1 I, + 11 1%, we obtain
I P4y avmangs < €l 1%, npar A0l (10)

see [23, Lemma 6.1], and applied to dual norms, we obtain

- ||%[A1,A2]9)' =" ||[2A’1,A'2]97 (11)

see [21, Theorem 3.7.1]. As the interpolation defined by the K-method is an
exact interpolation function, see [21, Theorem 3.1.2], we know that any bounded
operator ¥, which maps from a Hilbert space A; to a Hilbert space By and from
a Hilbert space Ay to a Hilbert space By, maps also from [A1, A3y to [B1, Balp
and satisfies

_ . Va;| B,
||\I]a||[Bl,B2]e < C]\411 GMQQHG’”[ALAZ]Q with  M; := Sup ” ‘ (12)
aea; |lailla,

for all 6 € (0,1), where ¢ only depends on 6.

3. Approximation error estimates

One vital component needed to prove multigrid convergence is an approxima-
tion error estimate. Approximation error estimates between the spaces L? (Q2)
and H! (Q2) are given in [17, 24] and used in [15, 16] to prove convergence for a
multigrid solver for the Poisson problem. For the biharmonic problem we need
similar estimates for H? ().

3.1. Approzimation error estimates for the periodic case

We start the analysis for the periodic case. We define for each ¢ € N the
periodic Sobolev space

HI (—-1,1):= {u e HI(-1,1) : uD (=1) =uW (1), VIe Ny withl < q}

per



and for each p € N the periodic spline space
SPr(—1,1) = {u € S(—1,1) : u® (=1) =u® (1) Ve Ny with [ < p}.

Let T/}" be the H%°-orthogonal projection into S}% (—1, 1), where the under-
lying scalar product (-, ), o(—1,1) 1S given by

(u,v) ) U)Hq(_1,1) +1 fil udz fil vde  for ¢ >0,
Ly (u, ”)Lz(—l,l) for ¢ =0,

1 1 . .
where 3 [*, udz [~ vdx is added to enforce uniqueness.

Theorem 1. Let p € Ny, ¢ € Ny with p > q and hp < 1. Then,

|(I—T£ﬁ’£”)u‘}]q(_1,1) < \/ih\u|Hq+1(_1,1) Yu € Hq+1( 17 1).

per

Proof. We use induction with respect to q.

Proof for ¢ = 0. [17, Lemma 4.1] gives an approximation error estimate
for the H':°-orthogonal projection of u into Sp% for p > 1. Because T0 per
minimizes the L?-norm, we obtain

12 = T2 Yl > < (T = T2 Yullze < VEhlulm Vu € Hl, (<1,1),

per

, the desired result. For p = 0, we observe that there are no periodicity
condltlons for the space Sfj The desired result on approximation by piecewise
constants is standard and can be found, e.g, in [25, Theorem 6.1].

Proof for ¢ > 0. We already know that the induction hypothesis holds true
for ¢ — 1, i.e., we have
|u—Tq 1peru\Hq 1(—1,1) <\fh|u\Hq( 1,1) Yue HY ( 1,1). (13)

per

As a next step we show that for all u € Hit'(=1,1), there is a uj € P
such that
| — | ra(—1,1) < V2|l a1y (14)

By plugging v’ into (13), we immediately obtain

% Tq 1peru|Hq 1( 11)<\fh|u|Hq+1 ~1,1) Vuqu+1( 1,1).

per

Let vy, = T, l’peru and define wy,(z) == [7, vy (£)d€ + v, where v € R such

that f Lun( )dx = 0. For this ch01ce we obtain the desired estimate (14). It
remains to show u; € Sper. As we have v, € S “ n» We obtain that uj, is a
spline of degree p. The contlnulty estimates

ugf)(—l) = ugll)(l) forl=1,...,p—1



follow directly from v,(bl)(fl) = v,(ll)(l) for ] =0,...,p— 2. So, it remains to
show up(—1) = up(1). Note that, as u is periodic, we have

1

un(=1) = un(1) = (u(1) —u(=1)) = (un(1) —un(=1)) = / u'(x) — uj (z)da

-1

1
/ v(z) —vp(z)dz = (I — T;:ll;,fer)v, 1)r2(-1,1)-
-1

Note that (-, 1)gr.o(—1,1) = (-, 1)2(~1,1) for any r, so we obtain
un(=1) = un(1) = (I = TR0, Da-vo-1,1)

and finally, as 1 € S}, ;, Galerkin orthogonality shows that this term is 0.
So, we have shown uy € S and (14). As the projector 7,7 minimizes the
HY-seminorm, we obtain

(I = TP Yul gra—1,1) < |u — un|ga(—1,1) < V2hlulgaer(—1,1),
i.e., the desired result. O

3.2. Approzimation error estimates for the univariate case

Now, we derive approximation error estimates for univariate splines that
satisfy the desired boundary conditions. First, we consider the approximation
of functions in the Sobolev space of functions with vanishing even derivatives
(and function values) on the boundary, given by

HY(0,1) = {u € H0,1) : u® (0) =u®) (1) =0, VIe Ny with 2l < q} :
by functions in a corresponding spline space, given by
SP0(0,1) := {u € 5(0,1) : u® (0) =u® (1) =0 VIe Ny with 21 < p}.

Now, we define II”"? to be the HZ-orthogonal projection from H(0,1) into
SP-0(0,1). This projector satisfies the following error estimate.
Theorem 2. Let p € N with p > 3 and hp < 1. Then,
(T =117 %)ul 20,1y < 2h°|ulpaory Vu € Hp(0,1)
Proof. Assume u € H3(0,1) to be arbitrary but fixed. Define w on (—1,1) by
w(z) = sign(x) u(|])

and observe that w € H*

per(—1,1). Using Theorem 1, we obtain
2,per _ 2,per 3,per
(=T 8 wlazny = (T =T )T = T0 " ) wlgz -1

< \/§h|(I - T;:}Izer)w|H3(,171) < 2h2|w|H4(,171).



First observe that |w|ga—1,1) = V2|u|pa(o,1). Define wy := T;’}ferw and

observe that we obtain wy(z) = —wp(—2z) using a standard symmetry argu-
ment. This implies that uy, the restriction of wy, to (0,1), satisfies uj, € SP0.
Moreover, we have |w — Wh|g2(—1,1) = \/§|u — uh|H2(071) and, as a consequence,

lu — un|m2(0,1) < 2]12|U|15r4(0,1)-

As the projector II”:% minimizes the H?-seminorm, the desired result follows.

O

Now, we consider the boundary conditions of interest for the first biharmonic
problem. Here, the continuous space is H3(0,1) and the discretized space is
59(0,1), given by

5°(0,1) := {u € S(0,1) : u(0) = u/(0) = u(1) = /(1) = 0} = S(0,1)NHZ(0, 1).

Now, we define TI° to be the H?Z-orthogonal projection from HZ(0,1) into
S9(0,1). This projector satisfies the following error estimate.

Theorem 3. Let p € N with p > 3 and hp < 1. Then,

|(1 = TI%)ulg2(0,1) < 2h%[ulprao1y Yu € HY(0,1) N HF(0,1).
Proof. First, define S*(0,1) := SN H}(0,1) and IT* : H3(0,1) — S* to be
the HZ2-orthogonal projector into the corresponding space. Since S0 C S*,
Theorem 2 directly implies

|(I = T*) w]g2(0,1) < 2R%w|paery Vw € Hp(0,1).

Now let u € H*(0,1) N H}(0,1) be arbitrary but fixed. Observe that for

w(z) == u(z) + %(xg — 322 + 2x)u”(0) — é(a:?’ —x)u" (1),
~———
¢1($)Z:: ¢2($)Z::

we obtain w € H$(0,1). Note that ¢1, ¢ € S* and |61]F4(0,1) = |P2|H4(0,1) = 0.
So,

| (I = 1I") ulg2(0,1) = u*lfelg

*
u—-1u |H2(071)

= inf
w*ES*

w — w*|H2(071) < 2h2|w|H4(0,1) = 2h2\u|H4(0,1).

Now, consider the function ¢ (z) := 3 (2 — ) and observe ¢; € S* and
0= ((1 =1I") u, ¥1) mr2(0,0) = [(I = II7) ] (1) = [(Z = IT*) u]'(0). (15)
As (I —II*)u € H{, we obtain

0=[(I =T0")u)(1) = [(T = TT) u)(0) = (1 = II") w, ¥5) 111 0,1),



where tho(z) := %(2® — z). Integration by parts and ¢4 (0) = 0 yields

0= (I =II") u, 99 ) gr0,1) = —((I = ) w, 9h2) g0,y + [[(T = TT7°) ] 5] (1).

As 1y € S*, Galerkin orthogonality yields —((I — IT*) u,v2) g2(0,1) = 0, so we
have [(I —IT*) u)'(1) = 0. This implies, in combination with (15), that

o' (1) = (T*u)’ (1) and «'(0) = (IT*u)’(0)

holds. So, for any u € H3(0,1), we have II*u € S*NHZ = S°. As I1° minimizes
the same norm, we obtain for any v € HZ(0,1) that IT*u = I1%u, so also the
projector II° satisfies the desired error estimate. O

Theorem 4. Let p € N with p > 3 and hp < 1. Then,
||(I - HO)“’HL"’(O,I) S 2h2|’U,|H2(0’1) YVue Hg((), 1)

Proof. This is shown using a classical Aubin Nitsche duality trick. Let u €
HZ(0,1) be arbitrary but fixed and choose v € H*(0,1) N HZ(0,1) such that

v"" = 4 — T1%:. Using integration by parts and Theorem 3, we obtain

(u — 1%, u — IT) (u — 1%, v"")

2(0.1) L2(0,1)
u — 11| 12 = = -
|| || (071) |u — HO’U/|L2(0’1) |U|H4(0’1)
0 0
- (v = T%,0) a1 < 2h? (u =%, 0) oo 1)
V] F2.0,1) B v —=11%]p2(0,1)

Galerkin orthogonality gives (u — I1%u, I1%) 42(0.1) = 0- Using this, the Cauchy-

Schwarz inequality and this H2-stability of II°, we finally obtain

(u — 1%, v — HO”)H2(0,1)
[v = T1%| 2 (0,1)

<2 h2|u — HO’U,|H2(071) <2 h2|u|H2(071),

Ju —Tul|L2(0,1) < 2R°

which finishes the proof. O

3.83. Approzimation error estimates for the parameter domain

In this subsection, we derive robust approximation error estimates for the
space SY(£2). For this purpose, we define the following projectors on u € H?(Q):

(TR ) u(Z1y e ooy Byt Tht 1y - -, L) 1= Hou(ml, ey Ty s Thtly e s Td)

V(@1 Tp 1, Thg1, -, 2a) € (0,1)87Y for k=1,...,d.
Lemma 2. The projectors 11"+ are commutative; that is,
I*0I% =1I%10*  for i=1,...,d and j=1,...,d.

Proof. The proof is completely analogous to that of [26, Lemma 12]. O

10



Let II := II,j, be the H2-orthogonal projection from HZ(Q) into SO(Q) =
SSJL(Q).
Theorem 5. Let p € N withp > 3 and hp < 1. Then,
(T = Itz gy < ch?lulpgagy Yu e HY(Q) N HF(Q).

Proof. For sake of simplicity, we restrict the proof to the two dimensional case.
Using the triangle inequality and the H2-stability of II*, we obtain

[0 (u — HzHyU)HLz(ﬁ) < |0 (u — HIU)HLz(ﬁ) + [| O 1T (u — Hy“)”m(ﬁ)

< |0 (u — qu)”Lz(ﬁ) + [| O (u — Hyu)HLz(ﬁ)-

Using Theorems 3 and 4 and a + b < c(a® + b?)'/?, we obtain

1/
0 (0 = T |y < B2 (10ratl 2 gy + 10ragtlZaiy) -

Using Lemma 2 and the same arguments as above, we obtain

1/2
0y (=TT | 2 ) < €2 (10puaatla ) + 10pumtlZey) -
Using this and Lemma 1, we finally obtain

<9 (I~ T uf ) = 20— TETV0) 2, ) 4 2010 (e — TT)|2,

< o (1nmzatl 22 gy + 10sayytl 2 gy + ||ayymu|| &+ 10yl 22 )

= ch4|u|H4(§).
Theorem 6. Let p € N with p > 3 and hp < 1. Then,

(= ul o < chlul oy Yo € @ N HEQ).
Proof. Theorem 5 states

(I = T)ul oy < ch?|ulagy Yu € HY(Q) N HE(Q),
and, as II is stable in H2, we have

(I = TD)ul oy < lulp@y Yu € HF(S),

Using (12) for § = 1/2 and (8), we obtain the desired result. O

11



Theorem 7. Let p € N with p > 3 and hp < 1. Then,
|(I = IDul gy gy < chlulpyzg) Vue H2(Q).

Proof. This proof is a variant of the classical Aubin Nitsche duality trick.
Let u € HZ(Q) be arbitrary but fixed. Define f € H~1(Q) by (f,:) =

(u—TIu, ") 1 (@) and define w € HF(Q) to be such that
(Aw, AD) a5y = (f, @) Vb € H}(Q).
Lax Milgram lemma yields |w\H2(§) = HfHH,z(ﬁ). Assumption 2 (applied to
the parameter domain) implies w € H3(Q) and [wlgs@y < lfllg-r@) = clu—
Hu|H1(§). We obtain
~ (ufﬁu,ufﬁu) 5 (ufﬁu,ufﬁu) 5
u—Tu| 1 ) = _ O - HY(Q)
u = Tlul g [l @)
Using Theorem 6, we further obtain
(u — Tu, u — )

HY(D)

|u—ﬁu|H1(§) <ch =
lw — Tw| 2 )

The definitions of f and w, Galerkin orthogonality, Cauchy-Schwarz inequality
and the H2-stability of IT yield

(fyu— f[u> o (Aw, Au — ﬁu))L2(§)

|u - Hu‘Hl(ﬁ) <ch

[w — Tw| 2 g lw — Tw| 2
(w,u—ﬁu) 206 (w—f[wm—flu) 206 N
<ch O _op = O < chju — Mul e )
w — Tw| 2 g lw — Tw| 2
< ch|u\H2(§),
which finishes the proof. O

3.4. Approzimation error estimates for the physical domain

In this subsection, we extend the robust approximation error estimates for
the space S°(€2) to the space S°(Q2) = S(Q)NHZ(Q). For this purpose, we define
I1 = IT,, ;, to be the H*-orthogonal projection from Hg(Q) into S°(2) = S) ,(Q).
Here and in what follows, h always refers to the grid size on the parameter
domain. All estimates directly carry over to the grid size hq on the physical
domain because we have ¢~ 1h < hq < ch.

Theorem 8. Let p € N with p > 3 and hp < 1. Then,

| (I — ) ulp2(0) < chlulgs@) Yu€ H*(Q)NHG(Q).
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Proof. Let u € H3(Q) N HZ(Q) and @ := u o G. By combining Friedrichs’
inequality, Theorem 6 and Assumption 1, we obtain

alu— i) o G~ g2a) < (I = W)l 2y < el(1 = W)t o ) < chlii] g
< aChHuHHs(Q) < ach|u|Hs(Q),
where [[I] o G™' € S°(). As IT minimizes the H2-seminorm, we obtain

| (I =I0) ulg20) < |u— (4] o G ' #2(q). Using @/a < ¢, the desired result
follows. 0

Theorem 9. Let p € N with p > 3 and hp < 1 and assume that € is such that
Assumption 2 holds. Then,

| (I —T0) u|gio) < chlulgz) Vu € HF(Q).
Proof. The proof is analogous to the proof of Theorem 7. In the proof, we use
Theorem 8 instead of Theorem 6. O
4. Stable splitting of the spline space

In this section, we introduce an L2-orthogonal splitting of the spline space
SY and show that the splitting is stable in H? analogously to [16]. To do this,
we need some more approximation error estimates and inverse inequalities.

4.1. Approzimation error estimates and inverse inequalities
First, we give an estimate for the periodic case.

Theorem 10. Let p € N with p > 3 and hp < 1. Then,

(I = T2E Yl p2—1,0) < 2P%|ulgz(-11) Yu € Hp, (—1,1).

per
Proof. Theorem 1 for ¢ = 2 and ¢ = 3 can be combined to
(1 = T2 Yul -1,y = (T = Tob )T = Ty Yul o (—1,1) < 2h°|ulpra(—1,1)

for all w € H,,.(—1,1). The desired estimate is shown by an Aubin Nitsche

duality trick, which is completely analogous to Theorem 4. O
Now, we extend the approximation error estimate to non-periodic splines.

Theorem 11. Let p € N with p > 3 and hp < 1. Then,

(1 = T17 %)l 2 0,1) < 2h°[ulmz00)  Vu € HB(0,1).

13



Proof. Assume u € H%(0,1) to be arbitrary but fixed. Define w on (—1,1) by
w(x) := sign(x) u(|z|)
and observe that w € H2,,(—1,1). Using Theorem 10, we obtain

per

(I = T2 wllp2(—1,1) < 2h%w|p2(—1,1)-

First, observe that |w|g2(_1,1) = \/i\u|Hz(071). Define wy, := T;’,’;erw and
up, as the restriction of wy. Observe that we obtain wp(z) = —wp(—x) us-

ing a standard symmetry argument. This implies u;, € SP°. It follows that
lw—wn| z2(—1,1) = V2||u — upn| z2(0,1). Using this, we obtain

||’LL — uh||L2(071) < 2h2|u|H2(071).

It remains to show that wj coincides with IIP%u, i.e., that u — up, is H?-
orthogonal to SP-¥. By definition, this means that we have to show

(u — up, vh)HQ(O,l) =0 Vo, € SP0, (16)

Let wy € SP" be defined as wy, := sign(z)vy(Jz|) and observe that (w —
Why Wh)g2(—1,1) = 2(U — Uk, Vn)E2(0,1) Since u, up, vy, are restrictions of w,

wp, Wy, respectively. Furthermore, (w — wp, Wn)g2(—1,1) = 0 by construction
,PET

since wy, := T;h w. This shows (16) and finishes the proof. O

Next, we need an inverse inequality. We extend the H' — L2-inverse inequal-
ity from [17] to the pair H? — L? and the space SP°

Theorem 12. For all grid sizes h and each p € N,

|’u,h|H2(071) < 12h2 ||uh||L2(O,1) Yup € SP0. (17)
Proof. We extend up to (—1,1) by defining wy,(x) = sign(z) up(|z|). Observe
that wy, € H?P*"(—1,1). Analogously to the proof of [17, Theorem 6.1], we
obtain
Wil 1) <2VBRTH [wh e gy and  Jwnlmy 11y < 2V3RT wnll oy ) -
The combination of these two results yields

[wh|m2(-1,1) < 12p72 ||wh||L2(—1,1) :

As |wp|g2(-1,1) = V2|un| 20,1y and lwnllp2(1,1) = \/§HuhHL2(O,1), the desired
result immediately follows. O
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4.2. Stable splitting in the univariate case
In the previous section, we have introduced the projectors 1PV : H%Z —
SP0 Now, we introduce the L?-orthogonal projectors

QP :5— 8P and QP i=1-Q"°,
which split S into the direct sum
S — SD’O D SD,l PEEEN uw= QD’O’LL =+ QD71’LL7

where SP>! is the L?-orthogonal complement of SP-0 in S. Because the splitting
is L?-orthogonal, we obtain

2 D,0, [|? D1, (|2
lullze 0.y = @ uHLQ(O,l) +]@ UHL2(0,1) VueS. (18)
We show that the splitting is stable in the H?-norm.
Theorem 13. Let p € N with p > 3 and hp < 1. Then,
071|u|%12(0,1) < |QD’OU|3{2(0,1) + |QD’1U‘§12(0,1) < C|“|§{2(0,1) VueS.

Proof. The proof is analogous to [16, Theorem 4]. The left inequality follows
from Cauchy-Schwarz inequality with ¢ = 2. For the right inequality, we have

|QD’OU|H2(0,1) < |HD’0U|H2(0,1) + |(1TP0 — QD’O)U|H2(0,1)
< |ulgz(0,1) + ch™2 H(HD’O - QD’O)UHLz(OJ) )

using the triangle inequality and the inverse inequality Theorem 12. Using the
triangle inequality and the approximation error estimate Theorem 11, we get

|QD’OU|H2(0,1)
< lul 20,y +ch™? (”(I - HD7O)“HL2(0,1) +|(T - QD’O)“||L2(0,1)>
< cfulg2(0,1)-
Using the inequality above together with
|QD’OU|§12(0,1) + |QD’1U‘%12(0,1) < 2lulao,1) + 3|QD’0“‘%12(0,1)a
completes the proof. O

4.8. Stable splitting in the multivariate case

__ The generalization to two and more dimensions is straight forward. Let
Q= (0,1)¢ and let a € {0,1}? be a multiindices. The space S(Q) is split into
the direct sum of 2% subspaces

S@= @ sPUQ) where $7Q) =P .. 0857
ae{0,1}4

The L? (ﬁ)—orthogonal projectors are given by
QP :=QP ™M ®...0 QP : S(Q) — SP(Q).

As in the univariate case, the splitting is stable.
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Theorem 14. Let p € N with p > 3 and hp < 1. Then,

[alag = 3 1QPul, 5 Vue SE@), (19)
ae{0,1}4

c_l\u%(ﬁ)g Z QP “u|B(Q) <c\u|i§(§) Yu e S(Q). (20)
ae{0,1}4

Proof. The equation (19) follows immediately from the equality in the one di-
mensional case. The left inequality in (20) follows immediately from the Cauchy-
Schwarz inequality.

It remains to show the right inequality in (20). Let o and u be arbitrary but
fixed. We have

d d
Q7 ulg ) =D 1107, Q7 ull7, ) = Y1107, Q7 @ -+ @ Q7] ).
k=1 k=1

We obtain

102,Q7 & - ® QP ul, o < o ullZ,

by applying (18) for all QP with [ # k and by applying Theorem 13 for
QP2 Combining these two inequalities yields

|QD QU‘B(Q) Cl“"g(ﬁ)'

Summing over all multi-indices « yields the desired estimate. O

5. Constructing a robust multigrid method

In this section, we develop a robust multigrid method for solving the linear
system (7). We assume that we have constructed a hierarchy of grids by uniform
refinement. We obtain Vi C V}, for two consecutive grids with grid sizes h and
H := 2h. For these spaces, we define P, : Vg — V}, to be the canonical
embedding. We denote the its matrix representation with the same symbol, the
restriction is realized as its transpose P;.

For a given initial iterate uglk), we obtain the next iterate uh by applying
the following steps. First, we perform v € N smoothing steps, given by

ugf’i) = uﬁlk’i_l) + TL,:1 (fh — Bhuﬁlk’i_l)) , fori=1,...,v,

where ugk’o) = uglk), Ly, represents the chosen smoother and 7 is an appro-

priately chosen damping parameter. The choice of Lj and 7 is discussed be-
low. Second, we perform a coarse-grid correction step, which is for the two-grid
method given by

“Ezkﬂ) = (k ) 4+ BBy b (fh - Bhu(k ’ ) '

16



Given a sequence of spaces, we replace the application of B;Il by one or two
steps of the method on the next coarser level. This results in the V-cycle or
W-cycle multigrid method, respectively. The application of B;Il is realized by
means of a direct solver only on the coarsest grid level.

In the sequel, we discuss two possibilities for the smoother, the Gauss Seidel
smoother and a subspace corrected mass smoother. While only the latter is
robust in the spline degree, the Gauss Seidel smoother is superior for small spline
degrees and for cases where a non-trivial geometry transformation is involved.
First, we introduce the framework for the convergence analysis and give common
results for both smoothers.

We show the convergence of the multigrid method based on the splitting of
the analysis into approximation property and smoothing property (cf. [27]). As
we do not assume full H4-regularity, we choose to show convergence in the norm
| - l|8,+h—2k,, where K, is the matrix obtained by discretizing (-,-)1(q). The
approximation property (21) and the smoothing property (22) read as follows:

(B + h=2ICh) Y2 (I — PuBy  PLBL) By (B, + h=2K,) 2| < Ca, (21)
(B + h=2KC3) "2 By (I — 7L,  Br)” (By + h=2KC,) "2 < v 1205, (22)

The combination of these two properties yields

CaCs

N7
i.e., the two-grid method convergences if sufficiently many smoothing steps are
applied. The convergence of the W-cycle multigrid method follows under weak
assumptions (cf. [27]).

The approximation property follows from the approximation error estimates
we have shown in Section 3.

q:=||(I = PuBBy' PBr)(I — 7Ly Bu)* |, +n-21c, <

Theorem 15. Let p € N with p > 3 and Hp < 1. Then, the approximation
property (21) is satisfied with a constant C4 being independent of h and p (cf.
Notation 1).

Proof. Theorem 9 states that the H?2-orthogonal projector Hgﬂ : H3(Q) —
Vi = Sz?, 1 (€) satisfies the approximation error estimate

| (I =10 ) ulm ) < e Hlulgz) Yu € Hi ().

As the considered functions are in HZ(Q2), Lemma 1 implies the same for the
B-orthogonal projector. For up € Vi, = Sgﬁh(Q), we can rewrite this is matrix-
vector notation:

17 = PuBy' PiBn) unl| ., < ¢ H llunlls,
Using the stability of projectors, we also obtain

17 = PuBy PiBr) unll, < llunlls,
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By combining these two results, we obtain using H = 2h < ch that
H (I - PhBI?IlPIIth) “hHBh,+h721ch < cllunllg, -
This reads in matrix-notation as
H(Bh +h2K)Y? (I - PuB; PLBY) B,j“"’H <ec
As ||TT'|| < ||T||?, we obtain that
H(Bh + 12K Y2 (I = PuBR PLBy) (I — PuBy PLBY) B (B + h‘2ICh)1/2H

is bounded by some constant ¢ and, as we have (I — Q)(I — Q) = I — Q for any
projector @, the desired statement (21). O

In the two subsequent subsections we show the smoothing estimate
1(Br, + h™* M) V2B, (I — 7L By) (B, + h ™M) V2 <v1Cs  (23)
and the stability estimate
1B/ *(1 = 7L, By B2 < 1. (24)

Estimate (23), together with an L? — H2-approximation error estimate for
the B-orthogonal projector would allow to prove a convergence result in the
norm || - ||g, +h—4m, , where My, denotes the mass matrix. However, the proof
of such an error estimate requires a full H*-regularity assumption, which is not
satisfied in the cases of interest.

Using Hilbert space interpolation, we obtain the following lemma.

Lemma 3. The combination of (23) and (24) yields (22), where Cs only de-
pends on Cyg.

Proof. First observe that Lemma 1, (23) and (24) yield

B (I — 7Ly " Br) ull(pr2()nn-sr2(0)y < V_IGSHUHH?(Q)mh*‘lL?(Q)7
I1Bn(I = 7Ly ' Bu) ullimrz(eyy < lulnaiy  Vu € Vi,

where B, and Ly, : Vj, — V} denote the operator interpretations of the corre-
sponding matrices. Using (12) for § = 1/2, (11), (10), (9) and (8), we obtain

|Bu(I = 7Ly By ulmyon-2m )y < eC8 v 2 ul g2 oyon-2m ),

where Cg := céév/ 2 only depends on Cs. This directly implies (22). O
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5.1. Gauss-Seidel smoother

The most obvious choice of a multigrid smoother is the (symmetric) Gauss-
Seidel method. For simplicity, we restrict ourselves to the symmetric Gauss-
Seidel smoother, consisting of one forward Gauss-Seidel sweep and one backward
Gauss-Seidel sweep. Let By, be composed into By, = Dy, — Cj, — C}, where CY, is
a (strict) left-lower triangular matrix and Dy, is a diagonal matrix. Then, the
symmetric Gauss-Seidel method is represented by

Ly, := (Dy, — Cy)D;, (D, — C},) = By, + C,D;, ' Oy,
see, e.g., [27, Note 6.2.26]. Using standard arguments, we can show as follows.

Lemma 4. The matriz Ly, satisfies
By < Ly < By + c(p)h™* My, (25)

where ¢(p) is independent of the grid size h, but depends on the spline degree p
and the geometry transformation G.

Proof. As C’hD,le,'l > 0, the first part of the inequality is obvious.
Now, observe that B; has not more than O(p?) non-zero entries per row, so

also the matrix D;1/2ChD;1/2 has not more than O(p?) non-zero entries per
row. The absolute value of each of them is bounded by 1 due to the Cauchy-
Schwarz inequality. So, we obtain using Gerschorin’s theorem that the eigen-
values of D;l/QC’hD,:l/Q are bounded by cp?, which implies

Ly, < By, + cp*'Dy,.
A standard inverse estimate (cf. [28, Theorem 3.91]) yields
Ly < By, 4 cp*8h~4diag (M)

where diag (My,) is the diagonal of the mass matrix Mj,. Note that the con-
dition number of the B-splines of degree p is bounded by p2? (cf. [29]), so we
obtain

Ly, < By + 2P p*9 =4 My,

which finishes the proof. O
Now, we can show the convergence of the multigrid method.

Theorem 16. Let p € N with p > 3 and Hp < 1. Then, there exists a constant
c(p), which is indepedent of h but depends on p and G, such that the two-grid
method with the symmetric Gauss-Seidel smoother (with T = 1) satisfies

c(p)
q S m7

i.e., it converges if sufficiently many smoothing steps v are applied.

19



Proof. From (25), we obtain 7L, 'B), < I for 7 = 1. [15, Lemma 2] implies
1L, *Bu(I — 7L By) Ly, P < et

from which the smoothing statement (23) follows using (25). The stability
statement (24) can be shown analogously. Lemma 3 yields the smoothing prop-
erty (22) with Cs = ¢(p)v~—1/2.

Theorem 15 yields the approximation property (21) with C4 = ¢. The
combination of smoothing property and approximation property yields conver-
gence. O

5.2. Subspace corrected mass smoother
We now construct a smoother that satisfies

¢ By < Ly, < (B +h ™M), (26)

where the constant ¢ is independent of p and h (Notation 1). To reduce the
complexity of the smoother, we construct the local smoothers not around the
original stiffness matrix By, representing (*,-)B(n), but around the spectrally
equivalent matrix Bj, representing (-,-)g(ﬁ). Moreover, we observe that the
original mass matrix My, is spectrally equivalent to M}, representing (-, -) L2(@)-
Using the spectral equivalence, we obtain that the condition

¢ By, < Ly < ce(By +h™*My), (27)

is equivalent to (26).

We follow the ideas of the paper [16] and construct local smoothers L,, for
any of the spaces Vj, o := SP2 N S where a = (a1,...,a4) € {0,1}% is a
multi-index. These local contributions are chosen such that they satisfy the
corresponding local condition

¢ 1By < Ly < ¢(By+h™* M), (28)
where

Ba = Qn,oBr(Qna) and M = QpaMp(Qna)

and Qp, is the matrix representation of the canonical embedding V3, o — Vj.
The canonical embedding has tensor product structure, i.e., Qp.a, @ - @ Qh a0y,
where the @}, o, are the matrix representations of the corresponding univariate
embeddings.

In the two-dimensional case, Bj, and M), have the representation

B,=BM+M®B and M) =M M,

where M and B are the corresponding univariate mass and stiffness matrices.
Restricting Bj, to the subspace Vh(al’az) gives

Bal,QQ = Ba1 ® Mag + Mal ® Ba27
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Where BO@ = Qh,aiB(Qh,ai)/ a’nd M()éq = Qh,a,M(Qh,a,)/
The inverse inequality for SP:° (Theorem 12), allows us to estimate

By < oMy,

where o = 144h~*. Using this, we define the smoothers Ly, o, as follows and
obtain estimates for them as follows:

Boo < 20My ® My =: Lgg < C(Boo + h74Moo),
Bo1 < My ® (e My + By) =: Lo1 < ¢(Bo1 + h™*Mao1), (20)
Bio < (B1 + o M) @ My =: L1y < ¢(Byo + h™* M),

( )

Bi1 <Bi®M; +M ®By =: L1 <c(Bin+h™*Mp).

The extension to three and more dimensions is completely straight-forward
(cf. [16]). For each of the subspaces V; o, we have defined a symmetric and
positive definite smoother L. The overall smoother is given by

Lh = Z (QD’Q)/LaQD’ay

ae{0,1}4

where Q2% = M71(Qp o)’ My, is the matrix representation of the L? projection
from V}, to V3. Completely analogous to [16, Section 5.2], we obtain

L' = Y Quali'(Qua)-

ae{0,1}4¢

Remark 1. How to realize the smoother computationally efficient, is discussed
in [16, Section 5].

The local estimates from (28) can be carried over to the whole smoother Ly,
analogous to the results from [16].

Theorem 17. Let p € N with p > 3 and hp < 1. Assume that
¢ 1By <Ly <c¢(Ba+h™*My) VYae{0,1}% (30)
Then, the subspace corrected mass smoother satisfies (27).

Proof. Using Theorem 14 and (30), we obtain

Bise Y @PYBQP < Y (@PVIQPT =Ly

ae{0,1}4 ae{0,1}4
and
Ln<ec Y. (QP*)(By+h*Mn)QP* < ¢(By + h™* M),
ae{0,1}4
which finishes the proof. O
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Now, we can show the robust convergence of the multigrid method.

Theorem 18. Let p € N with p > 3 and Hp < 1. Then, there exist two
constants 1o and ¢ independent of h and p (c¢f. Notation 1) such that for any
7 € (0, 719] the two-grid method with the subspace corrected mass smother satisfies

< er—1/2
1=

i.e., it converges if sufficiently many smoothing steps v are applied.

Proof. (29) and Theorem 17 show (27), the spectral equivalence of By, and By,
then shows (26). From that estimate, we obtain L, > ¢~ !B, which implies
that there is some constant 7y such that TLngh < I for all 7 € (0,79]. [15,
Lemma 2] implies

1L, 2B — 7Ly Br) Ly P < er oY,

from which the smoothing statement (23) follows using (26). The stability
statement (24) can be shown analogously. Lemma 3 yields the smoothing prop-
erty (22) with Cg = er=1/2p1/2,

Theorem 15 yields the approximation property (21) with C4 = ¢. The
combination of smoothing property and approximation property yields conver-
gence. 0

Remark 2. The multigrid methods discussed in this paper can be applied also
to the second biharmonic problem

A2u=finQ with u=Au=0onT.

Remark 3. The multigrid methods discussed in this paper can be applied also
to the third biharmonic problem

A2u=finQ with Vu-n=VAu-n=0onT

on the parameter domain. In this case, the subspace corrected mass smoother
has to be based on the splitting of S into the space of functions in S whose odd
deriatives vanish on the boundary and its orthogonal complement. This is the
same splitting which was used in [16]. How to transform a strong formulation
of the boundary condition to the physical domain, is not obvious.

6. Numerical results

In this section, we compare multigrid solvers based on the two smoothers
introduced in Section 5, the symmetric Gauss-Seidel smoother and the subspace
corrected mass smoother. This is done first for a problem with a trivial geometry
transformation, then for a problem with a nontrivial geometry transformation.

All numerical experiments are implemented using the G+Smo library [30].

22



6.1. FExperiments on the parameter domain

We solve the model problem on the unit square and the unit cube; that is,
A*u=f in Q:=(0,1)% with u=Vu-n=0 on T,
for d = 2,3 with the right-hand side
d
fzy,...,xq) := d*n* H sin (7zx;).
j=1

The problem is discretized using tensor product B-splines with equidistant knot
spans and maximum continuity.

(el 3 4[5 6 [ 7 [87]97]10]
Symmetric Gauss-Seidel
5 5 9 18 32 60 | 117 | 204 | 389
5 9 18 33 59 | 115 | 215 | 400
7 5 9 17 32 60 | 107 | 210 | 395
5 9 17 32 60 | 112 | 197 | 375
Subspace corrected mass smoother
5 40 39 38 35 33 30 28 26
6 41 41 41 40 38 37 35 34
7 41 42 42 41 40 39 37 36
8 42 42 42 42 41 39 38 37

Table 1: Iteration counts for the unit square.

(Ap ] 3 [ 4 [ 5 [ 6 [ 7 |
’ Symmetric Gauss-Seidel ‘
3 11 29 81 217 676
4 12 31 83 218 575
5 13 32 82 213 537
6 13 32 83 211 528

Subspace corrected mass smoother
3 33 23 18 16 15
4 45 41 36 32 28
5 50 50 48 46 43
6 52 53 52 51 49

Table 2: Iteration counts for the unit cube.

We solve the resulting system using a conjugate gradient (CG) solver, pre-
conditioned with one multigrid V-cycle with 1 pre and 1 post smoothing step.
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When using the W-cycle, which is covered by the convergence theory, one ob-
tains comparable iteration counts; as the V-cycle is more efficient, we present
our results for that case. When using the Gauss-Seidel smoother, we perform the
multigrid method directly on the system matrix By. When using the subspace
corrected mass smoother, we perform the multigrid method on the auxiliary op-
erator By, representing the reduced inner product (-, ) B()- Here, we use that
the matrices By, and By, are spectrally equivalent with constants independent of
p and h. For the subspace corrected mass smoother, we choose o1 := 0.015h*
for d =2 and 0~ := 0.020h* for d = 3. In all cases, we choose T := 1.

The initial guess is a random vector. Tables 1 and 2 show the number of
iterations needed to reduce the initial residual by a factor of 10~% for the unit
square and the unit cube. We do the experiments for several choices of the
spline degree p and several uniform refinement levels ¢. (The refinement level
¢ = 0 corresponds to the domain consisting only of one element.) On the finest
considered grid, the number of degrees of freedom ranges for d = 2 between
around 65 and 69 thousand and for d = 3 between 250 and 301 thousand. The
number of non-zero entries of the stiffness matrix ranges for d = 2 between
around 3 and 29 million and for d = 3 between 79 and 855 million.

As predicted, the iteration counts of the multigrid solver with Gauss-Seidel
smoother heavily depend on p. This effect is amplified in the three dimensional
case. The mass smoother (which is proven to be p-robust) outperforms the
Gauss-Seidel smoother for p > 7 in the two dimensional case and for p > 5 in
the three dimensional case.

6.2. Experiments on nontrivial computational domains

In this subsection, we present the results for the same model problem as
in the previous subsection, but on the nontrivial geometries shown in Fig-
ures 1 and 2.

Figure 1: The two-dimensional domain Figure 2: The three-dimensional domain

When using the Gauss-Seidel smoother, we again perform the multigrid
method directly on the system matrix Bp. When using the subspace cor-
rected mass smoother, we perform the multigrid method on the auxiliary op-
erator By, representing the reduced inner product (-, ~)B(§) on the parameter

domain. Again, we use that the matrices B, and Bj, are spectrally equivalent
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with constants independent of p and h, but which certainly depend on the ge-
ometry transformation. For the subspace corrected mass smoother, we choose
o~ ! :=0.015h* for d = 2 and o := 0.020h* for d = 3. Again, we choose 7 = 1
in all cases.

(el 3 1 4[5 [6 17 [81]97]10]
Symmetric Gauss-Seidel

5 15 15 20 | 37 | 69 | 133 | 220 | 413
6 17 16 21 37 | 66 | 127 | 234 | 428
7 18 17 21 37 68 125 | 231 | 413
8 19 17 | 21 37 | 67 | 120 | 217 | 380

Subspace corrected mass smoother

5 162 | 161 | 152 | 150 | 142 | 134 | 130 | 127
6 196 | 200 | 200 | 194 | 180 | 179 | 178 | 171
7 215 | 220 | 225 | 222 | 219 | 210 | 198 | 198
8 226 | 232 | 243 | 233 | 227 | 221 | 217 | 210

Table 3: Iteration counts for 2D physical domain given in Figure 1

(Ap[ 3 [ 4[5 [6 ] 7 |
Symmetric Gauss-Seidel

3 14 | 32 | 93 | 262 | 763
4 23 | 35 | 94 | 246 | 634
5 36 | 37 | 88 | 226 | 516
6 51 | 45 | 90 | 220 | OoM

Subspace corrected mass smoother

3 115 | 114 | 130 | 142 | 154
4 259 | 243 | 241 | 235 | 233
5 443 | 441 | 430 | 410 | 380
6 651 | 650 | 644 | 637 | OoM

Table 4: Iteration counts for 3D physical domain given in Figure 2

Tables 3 and 4 show the number of iterations® required to reduce the initial
residual by a factor of 10~%. Again, we obtain very nice results for the Gauss
Seidel smoother which — as for the case of trivial computational domains —
deteriorate if p is increased.

For the mass smoother, we have proven robustness in p and h. Here, the
results might look like the mass smoother is not robust in A. The reason is that
a sufficiency small grid size h is needed to capture the full effect of the geometry

1 The entry OoM indicates that we ran out of memory when assembling the stffness matrix.
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transformation. A similar observation can also be made for the Possion problem
(cf. [16, Table 4]). The effects of the geometry transformation can be measured
by the condition number of B;lBh. For the Poisson problem, this condition
number was estimated, e.g., in [31]. For the biharmonic problem, the condition
number is typically the square of the condition number for the Poisson problem,
which explains that the dependence on the geometry transformation is more
severe for the biharmonic problem.

6.3. A hybrid smoother

The numerical experiments have shown that the Gauss-Seidel smoother cap-
tures the effects of the geometry transformation quite well and that it is superior
to the mass smoother for nontrivial domains, unless p is particularly high. The
mass smoother is robust in p, but does not perform well for non-trivial geome-
tries. So, it seems to be a good idea to set up a hybrid smoother which combines
the strengths of both proposed smoothers.

We set up again a conjugate gradient solver, preconditioned with one multi-
grid V-cycle with 1 pre and 1 post smoothing step. Here, in order to represent
the geometry well, the multigrid solver is set up on the original system matrix
By. The hybrid smoother consists of one forward Gauss-Seidel sweep, followed
by one step of the subspace corrected mass smoother, finally followed by one
backward Gauss-Seidel sweep. As always, the subspace corrected mass smoother
— which requires a tensor-product matrix — is constructed based on the reduced
matrix B on the parameter domain. For the Gauss-Seidel sweeps, we choose
7 = 1; and for the subspace corrected mass smoother, we choose 7 = 0.125 and
o1 = 0.015h* for d = 2 and 7 = 0.09 and o~! = 0.015h* for d = 3.

Tables 5 and 6 show the iteration numbers for the hybrid smoother. We see
that the iteration counts are quite robust both in the spline degree p and in the
grid level £. For small spline degrees, the iteration counts are comparable to the
multigrid preconditioner with Gauss Seidel smoother. For high spline degrees,
the hybrid smoother outperforms both other approaches, even if one considers
that the overall costs for one step the hybrid smoother are comparable to the
overall costs of two smoothing steps of one of the other smoothers.

(\pfl 3 4[5 6 [ 7 [87]97]10]
Hybrid smoother

5 15 14 16 19 22 24 26 28
6 16 15 17 20 23 26 30 31
7 18 16 18 21 25 28 31 32
8 19 16 19 22 25 28 32 33

Table 5: Iteration counts for 2D physical domain given in Figure 1
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(Ap] 3 [ 4 [ 5 [ 6 [ 7 |

Hybrid smoother
3 13 14 17 22 26
4 23 22 23 26 31
5 36 34 33 36 41
6 51 44 44 46 OoM

Table 6: Iteration counts for 3D physical domain given in Figure 2
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