
A Black-Box Algorithm for

Fast Matrix Assembly in

Isogeometric Analysis

Clemens Hofreither

G+S Report No. 55

April 2017

A Black-Box Algorithm for Fast Matrix Assembly

in Isogeometric Analysis

Clemens Hofreither∗

April 18, 2017

Abstract

We present a fast algorithm for assembling stiffness matrices in Isogeo-
metric Analysis with tensor product spline spaces. The procedure exploits
the facts that (a) such matrices have block-banded structure, and (b) they
often have low Kronecker rank. Combined, these two properties allow us
to reorder the nonzero entries of the stiffness matrix into a relatively small,
dense matrix or tensor of low rank. A suitable black-box low-rank approx-
imation algorithm is then applied to this matrix or tensor. This allows
us to approximate the nonzero entries of the stiffness matrix while ex-
plicitly computing only relatively few of them, leading to a fast assembly
procedure.

The algorithm does not require any further knowledge of the used
spline spaces, the geometry transform, or the partial differential equation,
and thus is black-box in nature. Existing assembling routines can be
reused with minor modifications. A reference implementation is provided
which can be integrated into existing code.

Numerical examples demonstrate significant speedups over a standard
Gauss quadrature assembler for several geometries in two and three di-
mensions. The runtime scales sublinearly with the number of degrees of
freedom in a large pre-asymptotic regime.

1 Introduction

An often-cited obstacle in the practical use of Isogeometric Analysis (IgA; [10])
is the high computational effort required to assemble the involved stiffness ma-
trices, especially for higher spline degrees. For a d-dimensional tensor product
spline space with nd degrees of freedom and spline degree p, standard assem-
blers based on tensor product Gauss quadrature require O(ndp3d) operations to
compute the stiffness matrix, which has O(ndpd) nonzero entries.

For this reason, various approaches have been proposed to speed up matrix
asssembly in IgA. Rather than attempt to reiterate all prior work, we refer to
the two recent articles [9, 14], whose introductory sections contain an overview
of the state of the art. In short, many approaches aim at developing quadrature

∗Department of Computational Mathematics, Johannes Kepler University Linz, Altenberg-
erstr. 69, 4040 Linz, Austria. <chofreither@numa.uni-linz.ac.at>

The author was supported by the National Research Network “Geometry + Simulation”
(NFN S117), funded by the Austrian Science Fund (FWF).

1

rules which are more efficient than the naive tensor product Gauss quadrature
approach with O(p) nodes per knot span. On the other hand, the method pre-
sented in [14] is based on techniques of low-rank tensor approximation. Although
its applicability depends on the existence of good low-rank approximations to
the geometry map and coefficient functions, these techniques appear to be the
only known ones to achieve running times that scale sublinearly with the num-
ber of degrees of freedom in a significant pre-asymptotic regime. For surveys of
the large field of low-rank tensor methods, see [12, 11, 6].

Much like the approach in [14], the algorithm presented in the present work
is based on low-rank approximation and shares many of the same properties.
In particular, it achieves comparable speedups to those claimed in [14], can
achieve sublinear scaling, and its efficiency depends significantly on the low-
rank approximability of the involved quantities. The major advantage of the
proposed method is that, in contrast to [14], is is purely algebraic and black-box
in nature:

• it does not require explicit knowledge of the PDE, the geometry map or
the used basis functions and works without modifications for a wide class
of problems;

• it can reuse existing assembler routines with minor modifications;

• it is much easier to implement;

• a black-box implementation can be provided which can be integrated into
existing codebases relatively easily.

Rather than an entirely new assembler, the proposed algorithm may thus be
considered an algebraic “accelerator” to be wrapped around existing assemblers.
Two open-source implementations of this algorithm are made available to the
community (see Section 5.1).

Our approach is based on a matrix reordering first described by Van Loan
and Pitsianis [17] which converts Kronecker products into outer products of
vectors, and matrices with low Kronecker rank into matrices with low rank. The
particular block structure of IgA matrices allows us to eliminate the sparsity
pattern of the reordered matrix, producing a relatively small, dense matrix
which contains exactly the nonzeros of the original matrix. Since IgA matrices
often have low Kronecker rank or can be well approximated by matrices with
low Kronecker rank, the reordered matrix typically has low rank. By applying
Adaptive Cross Approximation (ACA) [1, 2] to this low-rank matrix, we can
compute it very accurately while evaluating only relatively few of its entries.
Once this is done, we recover the original stiffness matrix by simply reverting
the reordering operation.

The idea of the matrix reordering from [17] was already exploited for approx-
imations with low Kronecker rank in [8]; there, however, the Kronecker factors
were not banded, but instead approximated using H-matrices (cf. [7, 2]). A
similar approach where the blocks have Toeplitz structure is given in [15]. Tyr-
tyshnikov [16] gives some error estimates for a related approximation problem.
The exploitation of the block-banded structure that we use to represent the
reordered matrix compactly appears to be novel; likewise the application of
ACA to the reordered matrix in order to recover Kronecker approximations. A

2

previous use of ACA in the IgA context was for the efficient approximation of
bivariate functions by sums of separable splines [4].

The remainder of the paper is structured as follows. In Section 2, we describe
two crucial but natural properties of IgA stiffness matrices which we exploit in
the construction of our algorithm, namely the particular block-banded structure
and the low numerical Kronecker rank. Based on these two properties, we
develop our fast assembling algorithm in the 2D case in Section 3. The extension
to the 3D case is then rather straightforward and is described in Section 4. We
discuss an implementation and present numerical examples in Section 5.

2 Properties of IgA stiffness matrices

2.1 Hierarchical block-banded structure

We choose first a set of univariate basis functions

Φ = (ϕi)
n
i=1

over the interval [0, 1]. We make the assumption that the basis functions have
local support in the sense that, for some p ∈ N, we have

|i− j| > p =⇒ |suppϕi ∩ suppϕj | = 0 ∀i, j = 1, . . . , n.

Basis functions typically used in IgA, such as B-splines and NURBS, naturally
satisfy this assumption with p being the spline degree. In higher dimensions,
we take tensor product bases, e.g., with univariate bases Φ1 and Φ2,

ϕi1,i2 ∈ Φ1 × Φ2 : ϕi1,i2(x, y) = ϕi1(x)ϕi2(y) (1)

in the two-dimensional setting. If Φ1 and Φ2 have support overlap p1 and
p2, respectively, then the tensor product basis inherits a similar local support
property, namely,

|i1 − j1| > p1 ∨ |i2 − j2| > p2 =⇒ |suppϕi1,i2 ∩ suppϕj1,j2 | = 0 (2)

Typically in IgA, one introduces a geometry mapping G : [0, 1]d → Ω from
the parameter domain to the computational domain of interest. The actual
basis functions over Ω are then given by

Φ̃ = {ϕ ◦ G−1 : ϕ ∈ Φ}.

The basis functions so defined may lose the tensor product property (1), but
retain the local support property (2).

We now assume to be given a bilinear form a(·, ·), defined at least over the
span of the basis functions, which preserves locality in the sense that

|suppu ∩ supp v| = 0 =⇒ a(u, v) = 0. (3)

Typically, a(·, ·) arises from the weak formulation of a partial differential equa-
tion of interest, in which case this condition is natural.

Let N = |Φ| denote the total number of basis functions. We are interested
in the fast computation of the matrix

A = (aij)
N
i,j=1, aij = a(ϕj , ϕj)

3

which represents the discretization of the bilinear form a(·, ·). Basis functions
arising from a tensor product construction are assumed to be numbered in lex-
icographic order. We will always refer to A as a stiffness matrix in the sequel,
although it may also be a mass matrix or arise from a different bilinear form.

Under the assumptions (3) and local support of the basis functions, A has

• banded structure in the 1D case,

• block-banded structure in the 2D case,

• a “multi-level” or “hierarchical” banded structure in the 3D and higher-
dimensional case.

See Figure 1 for examples of 2D and 3D sparsity patterns. To make precise the
structure of these matrices, we give the following inductive definitions.

0 50 100 150
0

50

100

150

0 50 100 150 200
0

50

100

150

200

Figure 1: Sparsity pattern of a 2D (left) and a 3D (right) IgA stiffness matrix.
The 2D matrix is a banded block matrix where each block is itself banded. The
3D matrix is a banded block matrix where each block has the structure of a 2D
matrix. This suggests the inductive Definition 2.

Definition 1. A matrix B ∈ Rn×n is called banded or 1-level banded with
bandwidth p if

|i− j| > p =⇒ bij = 0 ∀i, j = 1, . . . , n.

Definition 2. A matrix A ∈ Rn1···nd×n1···nd with blocks

Aij ∈ Rn2···nd×n2···nd , i, j ∈ {1, . . . , n1}

is called d-level banded with bandwidths (p1, . . . , pd) if each block Aij is (d−1)-
level banded with bandwidths (p2, . . . , pd) and

|i− j| > p1 =⇒ Aij = 0 ∀i, j ∈ {1, . . . , n1}.

It is easy to see that, by the above assumptions, d-dimensional IgA stiffness
matrices are d-level banded due to the local support property.

4

2.2 Kronecker product representations of IgA matrices

Many classes of matrices arising in IgA have natural representations in terms
of Kronecker products of lower-dimensional matrices. For instance, for any d-
dimensional tensor product basis

Φ = Φ1 × . . .× Φd

over [0, 1]d, the mass matrix can be written as the Kronecker product

M (d) = M1 ⊗ . . .⊗Md

of the univariate mass matrices Mj for Φj . The stiffness matrix for the Poisson
equation in [0, 1]d can be written inductively as

K(1) = K1,

K(d+1) = M (d) ⊗Kd+1 +K(d) ⊗Md+1,

where Mj and Kj are the univariate mass and stiffness matrices, respectively,
for Φj . Expanding this recurrence, we find that K(d) can be written as a sum
of d Kronecker products with d factors each. No representation with fewer
Kronecker products of these sizes exists. We say that M (d) has Kronecker rank
1, and K(d) has Kronecker rank d.

Once geometry transforms or varying PDE coefficients enter the picture,
these simple relations do not hold anymore. Nevertheless, if geometry transform
and coefficients are sufficiently smooth, good approximations to the mass and
stiffness matrices as sums of relatively few Kronecker products typically exist.

If k is the smallest integer such that A can be approximated to a fixed
accuracy ε by a sum of k Kronecker products, we say that A has numerical
Kronecker rank k. This is analogous to the standard notions of rank and nu-
merical rank (cf. [5]). There are many large matrices (such as those obtained
by sampling smooth functions on tensor product grids) with high or full rank,
but low numerical rank. These matrices admit good low-rank approximations.
Similarly, many block-structured IgA matrices admit good approximations with
low Kronecker rank.

The numerical Kronecker ranks for 3D IgA stiffness matrices over different
geometries were estimated numerically in [14]. In the tested examples, the
numerical Kronecker rank never exceeded 37. Crucially, it remained uniformly
bounded with respect to mesh refinements and increases in the spline degree.

A rigorous analytical bound on the numerical Kronecker rank of IgA stiffness
matrices is not known yet and is an interesting topic for future research.

3 Fast assembling in 2D

3.1 A reordering operation for block matrices

We denote by
vec : Rm×n → Rmn

the row-wise vectorization operator which maps a matrix to a vector by con-
catenating all its rows.

5

Remark 1. In [17], the column-wise vectorization operator was used. However,
the particular choice of the order does not matter, and we use the row-wise order
in order to better correspond to the lexicographic order in the 3D case that we
treat later on.

For a matrix A ∈ Rmn×mn with blocks

Aij ∈ Rn×n, i, j ∈ {1, . . . ,m},

we define the reordering

R(A) = Rm,n(A) =




(vecA11)T

(vecA12)T

...
(vecAm,m−1)T

(vecAm,m)T



∈ Rm

2×n2

as the matrix whose rows are the vectorizations of the blocks of A, ordered
lexicographically. Although R = Rmn depends on the block sizes m and n,
these sizes will always be clear from context and we omit them in writing.

This reordering operation was first described by Van Loan and Pitsianis [17].
The following fundamental property of the reordering of a Kronecker product,
although never explicitly stated in [17], is the motivation for its definition.

Theorem 1. For arbitrary matrices B ∈ Rm×m, C ∈ Rn×n, we have

R(B ⊗ C) = (vecB)(vecC)T .

Proof. Follows immediately from the fact that the blocks of the Kronecker prod-
uct A = B ⊗ C are given by Aij = bijC, and hence vec(Aij) = bij vecC.

The above result states that a Kronecker product, when reordered, turns
into a rank 1 matrix. More generally, due to linearity, if A can be written as a
sum of K Kronecker products Bi ⊗ Ci, then its reordering is given by

R(A) = R
(

K∑

i=1

Bi ⊗ Ci
)

=
K∑

i=1

(vecBi)(vecCi)
T . (4)

The smallest integer K for which we can find a representation of R(A) of the
form (4) is the rank of R(A). Equivalently, it is the Kronecker rank of A, i.e.,
the smallest K such that A is a sum of K Kronecker products (of matrices with
sizes m and n). In this sense, R converts Kronecker rank into matrix rank.

We observe that the Frobenius norm (and any other matrix norm defined en-
trywise) is invariant under R. Therefore, R allows us to convert good Kronecker
product approximations into good low-rank approximations and vice versa.

3.2 Reordering the stiffness matrix

We now apply the reordering operator from Section 3.1 to stiffness matrices
arising from 2D IgA discretizations as described in Section 2.1. We assume
that the used basis is the tensor product of univariate bases with dimensions
n1, n2 and support overlaps p1, p2, respectively. Recall that the resulting matrix

6

A
0 50 100 150

0

50

100

150

R(A)
0 50 100 150

0

50

100

150

Figure 2: Sparsity structure of a 2D IgA stiffness matrix (left) and of its re-
ordering (right).

A

0 20 40 60 80 100 120 140 160 180
10-2

10-1

100

101

si
n
g
u
la

r
v
a
lu

e
s

R̃(A)

1 2 3 4 5 6 7 8 9 10
10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

101

si
n
g
u
la

r
v
a
lu

e
s

Figure 3: Entries (top) and singular values (bottom) of a 2D IgA stiffness matrix
(left) and its deflated reordering (right). The geometry map is the quarter
annulus from Example 2D-A (see Section 5.2).

7

A is 2-level banded in the sense of Definition 2 with bandwidths (p1, p2). The
sparsity patterns of A and of its reordering R(A) are illustrated in Figure 2. We
observe that the resulting structure is very particular. This can be explained as
follows:

• Each row of R(A) is the vectorization of one block Aij of A. Due to
Definition 2, we have |i − j| > p1 =⇒ Aij = 0. Therefore, only µ1 =
O(n1p1) rows of R(A) are nonzero. We can precompute this pattern since
it only depends on n1 and p1.

• Due to Definition 2, each block Aij ∈ Rn×n has bandwidth p2. Thus, each
nonzero row of R(A) contains µ2 = O(n2p2) nonzero entries. Again, we
can precompute the pattern in dependence of n2 and p2.

This shows that we can easily extract a µ1 × µ2 submatrix of R(A) which
contains all its nonzero entries. We denote this dense, “deflated” submatrix by

R̃(A) ∈ Rµ1×µ2 .

Note that its entries are merely the µ1µ2 = O(n2p2) nonzero entries of A in a
different order.

We assume that the stiffness matrix A has low (numerical) Kronecker rank
due to the considerations in Section 2.2. It follows from Theorem 1 that R(A),

and hence also R̃(A), have low (numerical) rank. As an example, see Figure 3,

where A and R̃(A) are plotted together with their singular values. Here, A is

the stiffness matrix for a quarter annulus domain. In this example, R̃(A) has
rank 4.

Dense matrices with low rank, such as R̃(A), can be well approximated while
computing only relatively few of their entries by black-box algorithms such as
ACA, which we describe in the next section.

3.3 The ACA algorithm

The ACA algorithm was first described by Bebendorf [1, 2] and has been widely
used for the data-sparse approximation of dense matrices arising in 3D boundary
element methods. We give a basic version of it in Algorithm 1. Its core idea
is to construct a low-rank approximation by a series of greedily chosen rank 1
updates.

Algorithm 1 Adaptive Cross Approximation (ACA)

Given: B ∈ Rm×n

Output: X ∈ Rm×n

X ← 0, E ← B
for k = 1, . . . ,K do

choose a pivot (i, j) with e = E[i, j] 6= 0
compute the row r = E[i, :]
compute the column c = E[:, j]
update error E ← E − 1

ecr
T

update approximation X ← X + 1
ecr

T

end for

8

Here and in the following, we use the notation E[i, j] to refer to individual
entries of a matrix, and E[i, :] and E[:, j] for the i-th row and the j-th column,
respectively.

Some remarks on the implementation of ACA are in order.

• The input matrix B is typically not given in array form, but as a routine
which can compute individual entries of B on demand.

• In practice, one does not store the error matrix E, but instead computes
it on the fly from the invariant E = B−X. Therefore, accessing one entry
of E incurs the computation of one entry of B.

• Likewise, in many implementations, X is not stored as a full matrix, but
instead as a list of already computed rank 1 approximations. This allows
the reduction of the complexity fromO(Kmn) toO(K2(m+n)). However,
since we finally require all entries of X anyway, we do not use this approach
here and instead store X as a full matrix.

• The strategy for choosing the pivot E[i, j] is crucial to good performance.
For a good convergence rate, it is desirable to choose pivots with large
absolute values (see the analysis given in [2]). For instance, a full pivoting
strategy searches for the entry of the error matrix E with largest absolute
value. This means, however, that all entries of B have to be generated.
More economical is a row pivoting strategy, where the maximum is only
sought over a single row of E. After computing the column c, a heuristic
for the next row to be chosen is to take the row where c has maximum
absolute value.

While heuristic in nature, row pivoting is known to perform very well
in many applications, and we use it in our implementation. See [4] for
a favorable numerical comparison of the convergence rates of truncated
SVD, ACA with full pivoting, and ACA with row pivoting.

• The stopping criterion is given as a fixed number of iterations K in Algo-
rithm 1. In practice, one can specify a desired tolerance ε and terminate
the algorithm adaptively. Our strategy is the following:

– If |e| is close to machine epsilon, skip the current row for stability
reasons and choose a new one by random. If this happens three times
in a row, terminate.

– Otherwise, if |e| < ε for three iterations in a row, terminate.

With an implementation as described above, ACA requires the computation
of O(K(m+n)) entries of B. The overall complexity is O(K(m+n)γ+Kmn),
where γ is the cost for computing one entry of the input matrix.

3.4 The fast assembling algorithm in 2D

We now have all components in place to state the fast assembling algorithm in
the 2D case. The simple procedure is given in Algorithm 2.

In the first step, R̃(A) is approximated by means of ACA (Algorithm 1).
Recall that ACA does not require the full input matrix, but only a routine
which computes individual entries on demand. A procedure to compute an
entry R̃(A)[i, j] needs two ingredients:

9

Algorithm 2 Fast assembling algorithm in 2D

1. Compute X̃ = ACA(R̃(A)) ∈ Rµ1×µ2

2. Reconstruct Ã = R̃−1(X̃) ∈ Rn1n2×n1n2

• A translation of the indices (i, j) 7→ (i∗, j∗) such that R̃(A)[i, j] = A[i∗, j∗].
This is easily achieved by a simple re-indexing calculation. See (7) in
Section 4.1 for details.

• A routine to evaluate the stiffness matrix entry A[i∗, j∗] = a(ϕj∗ , ϕi∗).
This is the only step which explicitly depends on the PDE, the geometry
transform and the used basis functions. An existing assembler routine
(e.g., based on tensor product Gauss quadrature) can typically be easily
modified to produce a single entry instead of the entire matrix A.

Once X̃ has been computed to the desired accuracy by ACA, in the second
step the reordering and deflation operation R̃ is reversed to produce an approx-
imation Ã to the original stiffness matrix A. Again, this is easily done by basic
index calculations.

Error analysis. In the Frobenius norm (or any other matrix norm defined
entrywise), we have

‖A− Ã‖F = ‖R̃(A)− R̃(Ã)‖F = ‖R̃(A)− X̃‖F .

The latter term is just the error of the ACA approximation. It can be controlled
(heuristically) by choosing the target accuracy ε in the ACA algorithm. Our

experiments in Section 5.2 confirm that usually ‖A−Ã‖F . ε and ‖A−Ã‖2 . ε.
Complexity analysis. The complexity is dominated by the ACA step.

Assuming n1 = n2 = n and p1 = p2 = p, the size of R̃(A) is µ×µ with µ = O(np)
(cf. Section 3.2). Hence, by the ACA complexity analysis in Section 3.3, we
obtain the complexity O(Knpγ+Kn2p2), where γ is the cost for computing one
entry of the stiffness matrix. Using a typical tensor product Gauss quadrature
rule with O(p) quadrature nodes per knot span, we have γ = O(p4). This puts
the overall complexity for Algorithm 2 at

O(K(np5 + n2p2)),

whereas standard Gauss quadrature assemblers behave like O(n2p6). In prac-
tice, the ACA rank K will depend on the desired accuracy ε as well as the (nu-
merical) Kronecker rank of A. No analytical bounds for the latter are known,
but we see some typical values for K in the examples in Section 5 as well as in
[14]. Crucially, K is usually uniformly bounded with respect to n and p.

4 Fast assembling in 3D

The algorithm from Section 3 is rather straightforward to generalize to the 3D
and higher-dimensional cases. We only require a suitable generalization of the
reordering operator, which we provide in Section 4.1, and a generalization of
ACA to 3D, which we describe in Section 4.2. The complete algorithm is then
described in Section 4.3.

10

4.1 Matrix reordering in 3D

We first introduce an index-based notation for the previous reordering operation,
which will make it obvious how to generalize it to higher dimensions.

For any m,n ∈ N, denote the sequential numbering of the pairs (i, j) in
lexicographical order by

(i, j)m,n := (i− 1)n+ j ∀i = 1, . . . ,m, j = 1, . . . , n. (5)

For a block matrix A ∈ Rmn×mn, this notation allows us to describe by

A[(i1, j1)m,n, (i2, j2)m,n], i1, i2 ∈ {1, . . . ,m}, j1, j2 ∈ {1, . . . , n},

the entry (j1, j2) of the block Ai1,i2 . In particular, for two square matrices
B ∈ Rm×m, C ∈ Rn×n, the Kronecker product B ⊗ C ∈ Rmn×mn satisfies

(B ⊗ C)[(i1, j1)m,n, (i2, j2)m,n] = B[i1, i2]C[j1, j2]. (6)

The matrix reordering introduced in Section 3.1 can now be written as

R(A)[(i1, i2)m,m, (j1, j2)n,n] = A[(i1, j1)m,n, (i2, j2)m,n]. (7)

We point out that from (7) and (6), it immediately follows

R(B ⊗ C)[(i1, i2)m,m, (j1, j2)n,n] = B[i1, i2]C[j1, j2],

which is merely a rewriting of the statement of Theorem 1.
Relation (7) allows a simple generalization of the reordering R to dimensions

higher than two. The result will now no longer be a matrix, but a tensor of higher
order. We first point out that the lexicographic numbering scheme introduced
in (5) generalizes straightforwardly to higher dimensions and write

(i1, i2, i3)n1,n2,n3
:= [(i1 − 1)n2 + (i2 − 1)]n3 + i3,

i1 = 1, . . . , n1, i2 = 1, . . . , n2, i3 = 1, . . . , n3

for such an index in three dimensions.

Definition 3. For a matrix A ∈ Rn1n2n3×n1n2n3 , we define the reordering to a
three-way tensor

R(A) = Rn1,n2,n3(A) ∈ Rn
2
1×n2

2×n2
3

by the relation

R(A)[(i1, j1)n1,n1
, (i2, j2)n2,n2

, (i3, j3)n3,n3
]

= A[(i1, i2, i3)n1,n2,n3
, (j1, j2, j3)n1,n2,n3

]

∀ i1, j1 = 1, . . . , n1, i2, j2 = 1, . . . , n2, i3, j3 = 1, . . . , n3.

For square matrices B ∈ Rn1×n1 , C ∈ Rn2×n2 , D ∈ Rn3×n3 , we have, analo-
gously to the 2D case, that their Kronecker product A = B ⊗ C ⊗D satisfies

R(A)[(i1, j1)n1,n1 , (i2, j2)n2,n2 , (i3, j3)n3,n3] = B[i1, j1]C[i2, j2]D[i3, j3].

That is, R(B ⊗ C ⊗ D) can be written as the outer product of three vectors,
namely, of the vectorizations of B, C, and D. Thus, as in the 2D case, stiffness
matrices of low Kronecker rank give rise to reordered tensors of low rank.

11

Let now A ∈ Rn1n2n3×n1n2n3 be a 3-level banded matrix with bandwidths
(p1, p2, p3) according to Definition 2. We saw that typical IgA stiffness matrices
have this property. Take arbitrary multi-indices

(i1, i2, i3), (j1, j2, j3) ∈ {1, . . . , n1} × {1, . . . , n2} × {1, . . . , n3}.

Due to Definition 2 and Definition 3, we have

(∃α ∈ {1, 2, 3} : |iα − jα| > pα) =⇒
R(A)[(i1, j1)n1,n1 , (i2, j2)n2,n2 , (i3, j3)n3,n3] = 0.

Therefore, as in the 2D case, the reordered tensor R(A) has a rank 1 sparsity
pattern with µj = O(njpj) nonzeros per direction. We can precompute this
sparsity pattern and, after eliminating it from R(A), obtain a dense tensor

R̃(A) ∈ Rµ1×µ2×µ3 .

4.2 Cross approximation for three-way tensors

To perform the low-rank approximation of the three-way tensor which results
from reordering the stiffness matrix, we require an extension of the ACA algo-
rithm to tensors of higher order. Several such extensions have been published;
we use the one by Bebendorf [3]. We give the basic form in Algorithm 3.

Algorithm 3 ACA3D [3]

Given: B ∈ Rn1×n2×n3

Output: X ∈ Rn1×n2×n3

X ← 0, E ← B
for k = 1, . . . ,K do

choose a pivot (i, j, k) with e = E[i, j, k] 6= 0
compute the column c = E[:, j, k]
approximate the matrix V = ACA(E[i, :, :])
update error E ← E − 1

e (c× V)
update approximation X ← X + 1

e (c× V)
end for

Here, the idea is to perform successive updates not with the outer product
of vectors, as in the 2D case, but with the tensor product of a vector and a
matrix, by which we mean

(c× V)[i, j, k] = c[i]V [j, k].

Here, V ∈ Rn2×n3 is the matrix slice obtained by fixing the first index of E ∈
Rn1×n2×n3 to i. However, computing the entire matrix slice V would incur the
computation of n2n3 entries of the input tensor. In order to avoid this, V is not
computed exactly, but by an application of standard matrix ACA (Algorithm 1).
The ACA3D algorithm can thus be viewed as performing a hierarchical low-rank
approximation.

Most of the remarks on implementation details from Section 3.3 remain
valid for the 3D case. In particular, the pivoting strategy and stopping criteria

12

can be straightforwardly adapted to the 3D case. We found that using the
same truncation rank K (or the same tolerance ε for adaptive stopping) for the
inner ACA iteration as for the outer ACA3D iteration works well. In this case,
we need to compute O(K(n1 + K(n2 + n3))) entries of the input tensor. For
n1 = n2 = n3 = n, we obtain the bound O(K2n) for the number of computed
entries and thus the overall complexity O(K2nγ + Kn3) for ACA3D, where γ
is the cost for computing one entry of the input tensor B.

We mention one possible improvement which seems not to have been de-
scribed in the literature thus far: when invoking the inner ACA iteration to
approximate the matrix slice B[i, :, :], its starting matrix can be chosen as the
current approximation X[i, :, :] instead of 0 as in Algorithm 1. This does not
change the overall complexity, but reduces the required number of inner itera-
tions towards the end of the ACA3D algorithm, when X[i, :, :] is already a good
approximation to B[i, :, :], and can lead to noticeable speedups.

4.3 The fast assembling algorithm in 3D

The fast assembling algorithm in 3D proceeds exactly as the 2D variant in
Algorithm 2, but replacing R̃ by the corresponding 3D reordering operator
from Section 4.1 and replacing ACA by ACA3D from Section 4.2.

Complexity analysis. The complexity is dominated by the ACA3D step.
Assuming n1 = n2 = n3 = n and p1 = p2 = p3 = p, the size of R̃(A) is µ×µ×µ
with µ = O(np). Hence, ACA3D requires O(K2npγ + Kn3p3) operations,
where γ is the cost for computing one entry of the stiffness matrix. Using
tensor product Gauss quadrature with O(p) quadrature nodes per knot span,
we have γ = O(p6). This puts the overall complexity for the fast 3D assembling
algorithm at

O(K2np7 +Kn3p3),

whereas standard Gauss quadrature assemblers behave like O(n3p9). We see
some typical values for the rank K in the examples in Section 5.

5 Numerical examples

5.1 Implementation

Two implementations of the algorithm described in this paper were made by
the author and are provided as open source software. Both can be found on the
author’s homepage1.

The first is a standalone C++ file fastasm.cc without dependencies on any
external libraries. It does not include routines for computing entries of IgA
stiffness matrices, but is intended as a drop-in implementation in existing code-
bases where assembling routines already exist and can be modified to produce
the stiffness matrix entrywise.

The second implementation is part of the Python research toolbox for Isogo-
metric Analysis, pyiga2. It contains both a pure Python implementation of the
algorithm as well as a wrapper around the C++ implementation fastasm.cc.
The latter was used to produce the numerical examples below.

1http://www.numa.uni-linz.ac.at/~chofreither/software/
2https://github.com/c-f-h/pyiga/

13

The computation of the individual stiffness matrix entries in pyiga is im-
plemented in Cython3, a dialect of Python which compiles to C/C++. When
used as a standard “full” assembler without acceleration, it was confirmed that
these routines are relatively performant (slowdown no more than a factor 2x
compared to the assemblers contained in the G+Smo library4). These are the
numbers reported below for the full tensor product Gauss quadrature assembler.

In addition, pyiga provides full multithreaded parallelization for all assem-
bler routines. However, this feature was not used in the tests for clarity.

5.2 Tests

We compute Poisson stiffness matrices A for IgA with tensor product B-spline
basis functions for the four computational domains shown in Figure 4. Each
one is a single tensor product B-spline patch.

Example 2D-A Example 2D-B

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

Example 3D-A

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

Example 3D-B

Figure 4: Example geometries

For each space dimension, one simpler and one more challenging domain
was chosen. In 2D, the measure of complexity is simply the rank of R(A) or
equivalently, the Kronecker rank of A. In 3D, since the approximation produced
by ACA3D is closer in structure to a Tucker decomposition than to a canonical
decomposition, we use the Tucker rank of R(A), estimated by the rank of the
HOSVD [13], as a gauge of complexity. The number of outer and inner ACA3D

3http://cython.org/
4http://www.gs.jku.at/gismo

14

iterations never exceeded this number in our experiments. See [12] for a survey
of these concepts.

• Example 2D-A: a quarter annulus-shaped domain, approximated with
tensor product B-splines. The rank of R(A) is 4.

• Example 2D-B: a piecewise linear 6×6 discretization of the unit square
whose control points are randomly perturbed by uniformly distributed
values in [−0.02, 0.02]2. Due to lack of smoothness, this domain is more
challenging for low-rank approximation methods. The numerical rank of
R(A) is uniformly bounded by 75.

• Example 3D-A: a cylindrical extension of the quarter annulus from Ex-
ample 2D-A. The Tucker rank of R(A) is uniformly bounded by 5.

• Example 3D-B: a “twisted box” geometry which can be viewed as similar
to Example 3D-A, but with one square face twisted upwards. Somewhat
surprisingly, this example is significantly more challenging. The numerical
Tucker rank of R(A) is uniformly bounded by 40.

We remark that in all cases, the mass matrices have significantly lower rank
and are much easier and faster to compute than the stiffness matrices. We
therefore omit them in our tests.

We compute the stiffness matrices for these domains using tensor product
B-spline spaces with n uniform knot spans per direction and spline degree p. We
report the timings for a standard tensor product Gauss quadrature assembler as
well as for our accelerated low-rank assembler, where the desired accuracy for
the ACA or ACA3D iteration was set to ε = 10−10. We confirmed that in all
cases, the final error in the spectral norm between the matrix produced by the
standard assembler and the fast assembler was on the order of ε or less. Thus,
a standard perturbation analysis shows that the error in the solution of a linear
system with the approximated stiffness matrix relatively to the solution with
the exact stiffness matrix can be made arbitrarily small by a proper choice of ε.

The runtimes obtained on a Linux workstation with an Intel R© CoreTM i7-
2600 CPU with 3.40GHz and 8GB RAM, using only a single core, are shown
in Table 1 and Table 2 for the 2D and 3D problems, respectively. For each test
case, we give first the times for the Gauss quadrature assembler, then those for
our fast low-rank assembler, and finally the speedup, i.e., the ratio of the times.

We observe that the speedups increase both with n and with p. Even for
low spline degrees, however, the speedups are significant. They are particularly
dramatic in Example 3D-A, a 3D problem with very low rank. Comparing to
the speedups claimed for the low-rank assembling approach in [14], it appears
that our speedups are roughly comparable for problems of similar rank. Of
course, the exact numbers depend on implementation and hardware details.

We plot the times for the more difficult examples 2D-B and 3D-B in Figure 5.
We display the cases p = 2 and p = 4 and again compare the full Gauss assembler
and the proposed fast assembler. As expected, full Gauss assembly scales like
O(nd), since that is the scaling of the number of degrees of freedom for fixed
p. Over the tested range of n, the fast assembler can be roughly estimated to
scale like O(n1.4) in the 2D case and like O(n1.6) in the 3D case, thus behaving
sublinearly in the number of degrees of freedom. The complexity analysis in

15

102 103

n

10-2

10-1

100

101

102

ti
m

e
 (

s)
G (p=4)

LR (p=4)

G (p=2)

LR (p=2)

O(n2)

O(n1. 4)

101

n

10-2

10-1

100

101

102

103

ti
m

e
 (

s)

G (p=4)

LR (p=4)

G (p=2)

LR (p=2)

O(n3)

O(n1. 6)

Figure 5: Timings for Examples 2D-B (top) and 3D-B (bottom), plotted over
the number n of knot spans per coordinate direction. We compare the full Gauss
assembler (solid lines labeled ’G’) and our fast low-rank assembler (dashed lines
labeled ’LR’) for p = 2 and p = 4.

16

Sections 3.4 and 4.3 shows that asymptotically, the scaling has to approach
O(nd) for large n. This cannot be avoided as the method has to compute all
the O(ndpd) nonzero entries of A. However, these examples show that there is
a large pre-asymptotic regime where our fast assembler scales sublinearly.

References

[1] M. Bebendorf. Approximation of boundary element matrices. Numerische
Mathematik, 86(4):565–589, 2000.

[2] M. Bebendorf. Hierarchical Matrices, volume 63 of Lecture Notes in Com-
putational Science and Engineering. Springer Berlin Heidelberg, 2008.

[3] M. Bebendorf. Adaptive cross approximation of multivariate functions.
Constructive Approximation, 34(2):149–179, 2011.

[4] I. Georgieva and C. Hofreither. An algorithm for low-rank approximation
of bivariate functions using splines. Journal of Computational and Applied
Mathematics, 310:80–91, 2017. Special Issue on Numerical Algorithms for
Scientific and Engineering Applications.

[5] G.H. Golub and C.F. Van Loan. Matrix Computations. Johns Hopkins
University Press, fourth edition, 2012.

[6] L. Grasedyck, D. Kressner, and C. Tobler. A literature survey of low-rank
tensor approximation techniques. GAMM-Mitteilungen, 36(1):53–78, 2013.

[7] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. Part I:
Introduction to H-matrices. Computing, 62(2):89–108, 1999.

[8] W. Hackbusch, B. N. Khoromskij, and E. E. Tyrtyshnikov. Hierarchical
Kronecker tensor-product approximations. Journal of Numerical Mathe-
matics, 13(2):119–156, 2005.

[9] R.R. Hiemstra, F. Calabrò, D. Schillinger, and T.J.R. Hughes. Optimal
and reduced quadrature rules for tensor product and hierarchically refined
splines in isogeometric analysis. Computer Methods in Applied Mechan-
ics and Engineering, 316:966–1004, 2017. Special Issue on Isogeometric
Analysis: Progress and Challenges.

[10] T. J. R. Hughes, J. A. Cottrell, and Y. Bazilevs. Isogeometric analysis:
CAD, finite elements, NURBS, exact geometry and mesh refinement. Com-
puter Methods in Applied Mechanics and Engineering, 194(39-41):4135–
4195, October 2005.

[11] B.N. Khoromskij. Tensors-structured numerical methods in scientific com-
puting: Survey on recent advances. Chemometrics and Intelligent Labora-
tory Systems, 110(1):1–19, 2012.

[12] T. G. Kolda and B. W. Bader. Tensor decompositions and applications.
SIAM Review, 51(3):455–500, 2009.

17

[13] L. De Lathauwer, B. De Moor, and J. Vandewalle. A multilinear singular
value decomposition. SIAM Journal on Matrix Analysis and Applications,
21(4):1253–1278, 2000.

[14] A. Mantzaflaris, B. Jüttler, B. N. Khoromskij, and U. Langer. Low rank
tensor methods in Galerkin-based isogeometric analysis. Computer Methods
in Applied Mechanics and Engineering, 316:1062–1085, 2017. Special Issue
on Isogeometric Analysis: Progress and Challenges.

[15] V. Olshevsky, I. Oseledets, and E. Tyrtyshnikov. Tensor properties of mul-
tilevel Toeplitz and related matrices. Linear Algebra and its Applications,
412(1):1–21, 2006.

[16] E. Tyrtyshnikov. Kronecker-product approximations for some function-
related matrices. Linear Algebra and its Applications, 379:423–437, 2004.

[17] C. F. Van Loan and N. Pitsianis. Approximation with Kronecker products.
In Marc S. Moonen, Gene H. Golub, and Bart L. R. De Moor, editors,
Linear Algebra for Large Scale and Real-Time Applications, volume 232 of
NATO ASI Series, pages 293–314. Springer Netherlands, Dordrecht, 1993.

18

n p 1 2 3 4 5 6

100

Gauss
(seconds)

0.09 0.22 0.54 1.14 2.56 5.52
200 0.31 0.83 1.98 4.49 10.05 21.87
300 0.69 1.82 4.42 10.02 22.47 49.28
400 1.16 3.19 7.76 17.80 40.06 87.34
500 1.77 4.99 12.22 27.99 62.22 136.28
600 2.51 7.27 17.71 40.22 89.89 197.33
700 3.45 9.83 23.85 55.24 122.06 267.34

100

fast asm.
(seconds)

0.03 0.06 0.10 0.12 0.23 0.29
200 0.10 0.16 0.24 0.37 0.58 0.84
300 0.16 0.29 0.47 0.74 1.11 1.62
400 0.21 0.47 0.77 1.18 1.81 2.62
500 0.32 0.72 1.14 1.80 2.66 3.91
600 0.42 0.93 1.62 2.57 3.73 5.38
700 0.53 1.24 2.09 3.43 4.97 7.10

100

speedup

2.6 3.9 5.2 9.1 11.2 19.3
200 3.0 5.3 8.1 12.3 17.3 26.1
300 4.4 6.2 9.4 13.6 20.2 30.4
400 5.5 6.8 10.0 15.1 22.1 33.3
500 5.6 6.9 10.7 15.6 23.4 34.9
600 6.0 7.8 10.9 15.6 24.1 36.7
700 6.5 8.0 11.4 16.1 24.6 37.7

100

Gauss
(seconds)

0.11 0.23 0.54 1.19 2.59 5.59
200 0.32 0.87 2.01 4.49 10.06 21.93
300 0.68 1.87 4.49 10.04 22.57 49.54
400 1.19 3.26 7.89 17.91 40.16 87.85
500 1.81 5.09 12.39 28.00 62.38 137.00
600 2.58 7.45 17.87 40.14 90.14 197.01
700 3.49 10.08 24.12 55.06 122.72 269.49

100

fast asm.
(seconds)

0.12 0.20 0.34 0.59 1.13 2.06
200 0.24 0.44 0.80 1.46 2.64 4.39
300 0.38 0.77 1.45 2.47 4.47 7.81
400 0.55 1.18 2.11 3.77 6.64 11.11
500 0.76 1.64 3.09 5.27 9.07 15.00
600 1.01 2.26 4.24 6.96 11.96 19.64
700 1.29 2.79 5.32 9.10 15.37 24.12

100

speedup

0.9 1.2 1.6 2.0 2.3 2.7
200 1.4 2.0 2.5 3.1 3.8 5.0
300 1.8 2.4 3.1 4.1 5.0 6.3
400 2.1 2.8 3.7 4.7 6.0 7.9
500 2.4 3.1 4.0 5.3 6.9 9.1
600 2.6 3.3 4.2 5.8 7.5 10.0
700 2.7 3.6 4.5 6.1 8.0 11.2

Table 1: Results for Examples 2D-A (top) and 2D-B (bottom)

19

n p 1 2 3 4

5

Gauss
(seconds)

0.01 0.05 0.31 1.94
10 0.04 0.29 2.37 15.23
15 0.11 0.98 7.87 51.28
20 0.26 2.22 18.33 121.73
25 0.51 4.28 35.65 239.04
30 0.87 7.33 62.22 410.95
35 1.32 11.67 98.07 655.69

5

fast asm.
(seconds)

0.01 0.01 0.03 0.09
10 0.01 0.03 0.12 0.24
15 0.02 0.08 0.20 0.48
20 0.05 0.12 0.35 0.90
25 0.06 0.22 0.61 1.49
30 0.09 0.37 1.03 2.27
35 0.14 0.60 1.47 3.46

5

speedup

1.4 4.1 10.2 22.4
10 3.3 11.7 20.6 63.6
15 5.4 11.8 39.7 106.4
20 4.8 18.7 52.6 135.4
25 8.4 19.9 58.9 160.1
30 9.3 19.6 60.6 181.3
35 9.6 19.5 66.5 189.6

5

Gauss
(seconds)

0.01 0.05 0.32 1.94
10 0.04 0.30 2.37 15.29
15 0.11 0.98 7.88 51.57
20 0.26 2.24 18.37 122.86
25 0.52 4.31 36.03 239.15
30 0.87 7.38 62.57 412.52
35 1.34 11.79 98.28 655.12

5

fast asm.
(seconds)

0.02 0.12 0.53 1.81
10 0.09 0.36 1.70 5.75
15 0.15 0.63 2.57 10.13
20 0.22 0.86 3.87 14.35
25 0.31 1.17 5.06 18.94
30 0.40 1.53 6.83 23.40
35 0.50 2.03 8.64 30.17

5

speedup

0.4 0.4 0.6 1.1
10 0.4 0.8 1.4 2.7
15 0.8 1.5 3.1 5.1
20 1.2 2.6 4.7 8.6
25 1.7 3.7 7.1 12.6
30 2.2 4.8 9.2 17.6
35 2.7 5.8 11.4 21.7

Table 2: Results for Examples 3D-A (top) and 3D-B (bottom)

20

