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Abstract

Given a grid in Rd, consisting of d bi-infinite sequences of hyperplanes (possibly with
multiplicities) which are orthogonal to the d axes of the coordinate system, we consider the
spaces of tensor-product spline functions of a given degree on a multi-cell domain. Such
a domain consists of finitely many of the cells which are defined by the grid. A piecewise
polynomial function belongs to the spline space if its polynomial pieces on adjacent cells
have a contact according to the multiplicity of the hyperplanes in the grid. We prove that
the connected components of the associated set of tensor-product B-splines whose support
intersects the multi-cell domain forms a basis of this spline space. More precisely, if the
intersection of the support of a tensor-product B-spline with the multi-cell domain consists
of several connected components, then each of them contributes one basis function.

In the second part of the paper we consider hierarchical spline spaces, which are defined
by specifying a hierarchy of spline spaces on multi-cell domains (as analyzed in the first
part) and an associated domain hierarchy. By adapting the techniques from [12] to this
more general setting we are able to derive a basis of the hierarchical spline space provided
that the domain hierarchy satisfies certain mild assumptions.

1 Introduction

Hierarchical tensor-product splines were introduced by Forsey and Bartels [11] as a tool for
adaptive surface modeling. About ten years later, Kraft [17] defined a basis and a quasi-
interpolation operator for this spline spaces. At the same time, these splines were used for
adaptive surface fitting [15].

Since the advent of isogeometric analysis (IGA), which was established in 2005 as a new
approach to bridge the gap between analysis and design in engineering applications [6], there
is an renewed interest in adaptive and hierarchical techniques for tensor-product splines.

While the early approaches to adaptive refinement in IGA were based mostly on T-splines
[1, 10] which originated more recently than hierachical B-splines in geometric modeling [26],
it was soon observed that hierarchical B-splines possess a number of useful theoretical and
practical properties which make them well suited for numerical simulation based on IGA
[27]. It was shown that these adaptive splines can be equipped with a simple basis which
provides the partition of unity and improves the sparsity properties [13], that this basis is
strongly stable with respect to the L∞ norm [14] and that these functions can be implemented
efficiently using standard data structures [16]. Meanwhile there is a growing number of papers
on hierarchical methods in IGA [5, 18, 25].
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Recently, the new approach of locally refined splines has emerged [9]. Currently it is too
early to judge whether this will become a valuable alternative to the existing approaches.

Simultaneously, adaptive and locally refined spline spaces were considered from an alge-
braic viewpoint. More precisely, given a certain partition of the domain into axis aligned
boxes, the general goal is to determine the dimension of the spline space (which contains all
piecewise polynomial functions of a certain degree and smoothness) and to construct a basis.
Several valuable contributions for various cases were described in the rich literature on this
topic [7, 8, 19, 20, 21, 22, 23]

Under certain conditions, the hierarchical spline basis spans the entire space of all piecewise
polynomial functions of the given degree and smoothness which are defined on the underlying
grid (which possesses T-joints) and is therefore complete. Such conditions were first studied
in [12] for the bivariate case of uniform degrees, dyadic refinement and maximum smoothness.
A number of recent manuscripts and preprints presented several generalizations, based on the
algebraic framework (homology techniques) described in [22]. We mention the recent preprint
[2] which addresses the three-dimensional case and the additional preprints [3, 4].

The present paper introduces a different approach. It is based on the observation that
the completeness of the hierarchical spline space can be studied without using advanced re-
sults from algebraic homology, employing solely standard methods from the theory of tensor-
product spline functions. The simple approach presented in this paper allows to derive suffi-
cient conditions for complete hierarchical spline spaces in any dimension, for any smoothness
and for any degree.

The remainder of this paper consists of two sections. First we analyze the dimensions and
the bases of a tensor-product spline function on a multi-cell domain. In the second part, by
a slight generalization of the techniques from [12], we derive a simple sufficient condition for
the completeness of a hierarchical spline space.

2 Splines on multi–cell domains

This section derives a basis for tensor-product splines on multi-cell domains. After presenting
some definitions, we will prove that this spline space is spanned by a basis consisting of all
connected components of the tensor-product B-splines whose supports intersects the multi-cell
domain.

2.1 Tensor–product B–splines

Given a positive integer d which specifies the dimension of the space, we consider the d–
dimensional space Rd with coordinates x = (x(1), . . . , x(d)). In addition, we consider d bi–
infinite strictly increasing sequences(

g
(i)
j

)
j∈Z

, g
(i)
j < g

(i)
j+1

which will be called the nodes. Using these sequences of nodes we define a grid G consisting
of grid hyperplanes

G
(i)
j = {x ∈ Rd | x(i) = g

(i)
j }

with associated multiplicities m
(i)
j , which do not need to be the same for all the hyperplanes

in the grid.
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In addition we choose a degree p = (p(1), . . . , p(d)), where all p(i) are positive integers. We
denote with B the set of tensor product B–splines defined on this grid. More precisely, these
tensor–product B–splines are products of d univariate B–splines with the variable x(i), which
are defined by the bi–infinite knot vectors

(. . . , g
(i)
j−1, . . . , g

(i)
j−1︸ ︷︷ ︸

m
(i)
j−1times

, g
(i)
j , . . . , g

(i)
j︸ ︷︷ ︸

m
(i)
j times

, g
(i)
j+1, . . . , g

(i)
j+1︸ ︷︷ ︸

m
(i)
j+1times

, . . . ),

where each knot appears as often as specified by the multiplicity of the associated hyperplane.
These tensor-product B-splines are well–defined if the multiplicities satisfy

1 ≤ m(i)
j ≤ p

(i) − 1. (1)

In the sequel we will denote the tensor-product B-splines β ∈ B simply as B-splines.
We consider d indices j1, . . . , jd ∈ Z. The closed set

d

X
i=1

[g
(i)
ji−1, g

(i)
ji

], (2)

which is the Cartesian product of d closed intervals between adjacent nodes, is called a cell
of the grid. The set of all cells will be denoted by C and the individual cells will be denoted
by c ∈ C.

Consider a cell c ∈ C. We define the set of all B–splines which act on this cell,

Bc = {β ∈ B | c ⊂ supp β}, (3)

where the symbol supp denotes the support of a function, i.e.,

supp g = {x ∈ Rd | g(x) 6= 0}.

In the case of B–splines, where the multiplicity of the knots is less than the degree, this is an
open set.

Example 1. Figure 1 shows an example of a set Bc. We consider biquadratic B-splines on a
uniform grid with all multiplicities equal to 1 in the plane. The cell c is shown in gray. The
basis functions which belong to the set Bc are represented by the small circles in the centers
of their supports, which coincide with their Greville points.

Consider a polynomial f of multi–degree p, i.e., f is a polynomial with the variables
x(i), where the degree with respect to x(i) is at most p(i). We denote the linear space of all
polynomials of this kind by Πp(Rd).

When restricting f and Πp(Rd) to this cell, we obtain

Πp(c) = {f |c | f ∈ Πp(Rd)}.

Each restriction f |c can be expressed as a linear combination of the tensor–product B–splines
in Bc,

f |c(x) =
∑
β∈Bc

λβc (f |c)β|c(x), x ∈ c, (4)

where λβc (f |c) is the coefficient of β ∈ Bc in the local representation of the polynomial f on
the cell c. Note that f is a polynomial defined on Rd, whereas f |c is defined on c only.

Example 2. Consider again the example of biquadratic splines in Figure 1. Each cell is
influenced by nine basis functions from Bc, and each biquadratic polynomial on the cell can
be uniquely represented as a linear combination of these nine functions.
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Figure 1: The set of basis functions which act on a single cell.

2.2 Contact of polynomial pieces

We denote the partial derivatives of a polynomial f by

∂ji f :=
∂jf

∂(x(i))j
.

Given a polynomial f |c on a cell c, we define its partial derivatives by considering its canonical
extension to Rd,

∂ji (f |c) := (∂ji f)|c,

thereby avoiding the need to consider one–sided limits at the boundary of c.
Consider two cells c, d ∈ C. There exist indices ji, ki ∈ Z so that

c =
d

X
i=1

[g
(i)
ji
, g

(i)
ji+1] and d =

d

X
i=1

[g
(i)
ki
, g

(i)
ki+1].

Their intersection is an axis-aligned box whose dimension is less then or equal to d. If the
intersection is non-empty, then it can be written as

c ∩ d =
d

X
i=1

[g(i)
ai , g

(i)
bi

], (5)

where ai = max{ji, ki} and bi = min{ji, ki}+ 1. Note that the i–th interval in the Cartesian
product degenerates to a single point if ji = ki + 1 or ki = ji + 1 for i = 1, . . . , d.

Definition 3. Let fc ∈ Πp(c) and gd ∈ Πp(d). Then we say that the polynomials fc and gd
have a contact on c ∩ d (and write fc ∼ gd) if

∀x ∈ c ∩ d : (∂ji fc)(x) = (∂ji gd)(x)

is satisfied for all i = 1, . . . , d and{
j = 0, . . . , p(i) if ai < bi,

j = 0, . . . , p(i) −m(i)
ai if ai = bi,

where c ∩ d has the form (5) and m
(i)
ai is the multiplicity of the hyperplane G

(i)
ai in the grid.
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(a) edge contact (b) vertex contact

Figure 2: Basis functions influencing two cells in biquadratic case
with single knots. The circles and solid boxes correspond to basis
functions influencing the left cell, while the solid boxes and empty
boxes identify the basis functions which are need to represent
polynomials on the second cell.

Note that any two polynomials on disjoint cells have a contact, since c∩d is empty in this
case. The relation ∼ is symmetric and reflexive, but not transitive. The order of the contact
depends on the given multiplicity of the grid hyperplanes. The higher the multiplicity, the
smaller the number of derivatives which have to agree.

From now on we will use the notation

β|c∩ d 6= 0

to express the fact the B-spline β does not vanish identically on c ∩ d, i.e.,

∃x ∈ c ∩ d : β(x) 6= 0.

The contact between two polynomials on different cells can be characterized easily with
the help of the B-spline coefficients.

Lemma 4 (Contact Characterisation Lemma (CCL)). We consider two cells c, d ∈ C with
associated polynomials fc ∈ Πp(c) and gd ∈ Πp(d). These polynomials fc and gd have a
contact on c ∩ d if and only if

∀β : β|c∩ d 6= 0⇒ λβc (fc) = λβd (gd).

Proof. This can be proved by extending the univariate blossoming argument (see e.g. [24],
section 7.1; the generalization for multivariate Bézier surfaces is outlined in Section 9.7) to the
tensor product setting. Indeed, the two polynomials have a contact if and only if the associated
values of their blossoms coincide, which then correspond to the B-spline coefficients.

Example 5. Consider again the bivariate biquadratic case with single knots. There are three
possibilities of contact between two polynomials on two cells, see Figure 2:

1. The cells are disjoint and all polynomials have a contact (not shown).

2. The cells share a vertex and the values, the two first derivatives and the mixed partial
derivative are equal at this vertex (right picture).
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3. The two cells share an edge (left picture) and the values, the first partial derivatives
across this edge (called the cross-derivative), and all derivatives of the value and the
cross-derivative along this edge take the same values. Clearly, derivatives of order higher
than two along the edge are zero for biquadratic polynomials.

These situations can be characterized by the B-spline coefficients:

1. There is no condition if the cells are disjoint.

2. In the case of a vertex-vertex contact, the B-spline coefficients associated with the B-
splines of the four neighboring cells have to take the same values.

3. In the case of edge-edge contact, six coefficients have to be identical.

2.3 Piecewise polynomials on multi–cell domains

We consider a finite subset M ⊂ C, which we will call a multi-cell domain. More precisely,
the set M contains a finite number of cells of the form (2). Furthermore, we will use the
abbreviation ⋃

M =
⋃
c∈M

c

for the subset of Rd occupied by the cells from M . The set
⋃
M is a closed and bounded

subset of Rd.

Definition 6. Given a multi-cell domain M ⊂ C we define the disconnected space (also called
the space of piecewise polynomials) by

D(M) = {s = (sc)c∈M | sc ∈ Πp(c)}.

Thus any piecewise polynomial s ∈ D(M) is a collection of polynomials sc, one for each
cell c ∈M . Note that these polynomials may take different values at the grid lines, therefore
it is not possible to define a global function on

⋃
M . Nevertheless, each of them can be

represented in the B–spline basis as observed in (4),

sc(x) =
∑
β∈Bc

λβc (sc)β|c(x), x ∈ c, c ∈M.

Definition 7. We consider a multi-cell domain M and the associated disconnected space
D(M). The spline space on M is defined by

S(M) = {s ∈ D(M) | ∀c, d ∈M : sc ∼ sd}. (6)

For s ∈ S(M) we define s̃ :
⋃
M → R so that

s̃(x) = sc(x) if x ∈ c, c ∈M.

This function is well–defined (single–valued), since any two polynomial pieces sc and sd
meet at least continuously along the intersection c∩d of the cells. By using the characteristic
functions χc of the cells c ∈M , we may express it in terms of the basis functions as follows:

s̃(x) =
∑
c∈M

∑
β∈Bc

λβc (sc)β(x)χ?c(x), x ∈
⋃
M (7)
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with the normalized characteristic functions

χ?c(x) =


χ(x)∑

c∈M χc(x)
, if x ∈

⋃
M.

0 otherwise

Strictly speaking, the elements of S(M) are |M |–tuples of polynomials, where |M | is the
number of cells in M . In order to keep the notation simple, we will use the same notation for
the actual spline functions s̃.

That is, we will consider the elements of S(M) simultaneously as |M |–tuples of polyno-
mials and as piecewise polynomial functions defined on

⋃
M . Consequently, we will simply

write s instead of s̃, and we will denote the linear space of all piecewise polynomial functions
on
⋃
M with the required contacts between the polynomial segments as S(M).

Definition 8. For each basis function β ∈ B we now define the coefficient graph Gβ as follows.

• The vertices of Gβ are the cells c ∈M such that c ⊂ supp β.

• Two vertices c and d are connected by an edge if β|c∩ d 6= 0.

The set of connected components of this graph will be denoted with CC(Gβ).

If there is no overlap of β with
⋃
M then both the coefficient graph Gβ and the set CC(Gβ)

of connected components are empty.

Example 9. We consider again the bivariate biquadratic case. Figure 3 shows a multi-
cell domain consisting of eight cells (a) and the supports of three basis functions (b). The
coefficient graphs of these three basis functions are presented in (c). The coefficient graphs
of β and γ have only one connected component, while the coefficient graph of α has got two
of them.

Proposition 10. Consider a piecewise polynomial s ∈ D(M). Then s is contained in the

spline space S(M) if and only if λβc (sc) = λβd (sd) whenever c and d belong to the same
connected component of Gβ.

Proof. Consider a piecewise polynomial s ∈ S(M). Assume there exist c, d in the same

connected component such that λβc (sc) 6= λβd (sd). Then there exist two different values of
coefficients corresponding to neighboring vertices c′ and d′ in the connected component. Ac-
cording to CCL (Lemma 4) sc′ and sd′ do not have contact and therefore s does not belong
to S(M).

On the other hand, if all coefficients λβc (sc) for all cells c belonging to one connected
component of Gβ take the same value, then all sc have a contact by CCL (Lemma 4) and thus
s ∈ S(M).

2.4 Basis of splines on multi–cell domains

Definition 11. For every β ∈ B and every H ∈ CC(Gβ) we define the function

βH(x) =
∑
c∈H

β(x)χ?c(x).
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c1

c3 c4 c5

c2

c6 c7 c8

(a) domain

α

β

γ

(b) basis functions

c1 c2

c3 c4

c6 c7 c9

α β γ

(c) coefficient graphs

Figure 3: A multi-cell domain with eight cells (a), the supports
of three biquadratic B-splines (b) and the associated coefficient
graphs (c).

The set of all these functions is denoted by

∆B =
⋃
β∈B
{βH | H ∈ CC(Gβ)}.

Theorem 12. The set ∆B – when restricted to
⋃
M – forms a locally linearly independent

basis of S(M).

Proof. Consider s ∈ S(M). First we prove that s can be obtained as a linear combination of
functions from ∆B. Rearranging (7) gives

s(x) =
∑
β∈B

∑
c∈Gβ

λβc (sc)β(x)χ?c(x) =
∑
β∈B

∑
H∈CC(Gβ)

∑
c∈H

λβc (sc)β(x)χ?c(x), (8)

where x ∈ Rd. For each function β ∈ B and for each H ∈ CC(Gβ) all the coefficients λβc (sc)
have to be the same for all c ∈ H according to Proposition 10. We will denote this coefficient
by λβH(s). Thus we may rewrite (8) as

s(x) =
∑
β∈B

∑
H∈CC(Gβ)

λβH(s)
∑
c∈H

β(x)χ?c(x)︸ ︷︷ ︸
=βH

.

Second we prove the local linear independence of the functions. Consider an open subset
X ⊂

⋃
M and a linear combination of functions βH that do not vanish on X, which is equal

to zero on X. For each βH we consider a cell c ∈ H, which has a nonempty intersection
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Figure 4: The support of a bicubic B-spline basis which violates
the assumption of Corollary 13 with respect to the domain con-
sisting of all shown cells.

with X. Clearly, βH does not vanish on c. Moreover, the restrictions of all functions βH
to this cell are either zero or equal to the restrictions of mutually different tensor–product
B–splines β ∈ B. From the local linear independence of functions β ∈ B we then obtain that
the coefficient of βH in the linear combination is zero. Repeating this for all functions βH we
conclude that the functions βH are locally linearly independent. Clearly, this also implies the
linear independence of ∆B.

Corollary 13. If each of the intersections of the supports supp β with the multi–cell domain⋃
M is connected, then the functions in

BM = {β ∈ B | supp β ∩
(⋃

M
)
6= ∅},

when restricted to
⋃
M , form a basis of S(M).

Proof. Indeed, if this condition is satisfied, then each coefficient graph in Theorem 12 has
either one connected component or it is empty.

Example 14. The condition concerning the connected sets in Corollary 13 means that there
is no situation as shown in Figure 4 for bicubic B-splines with single knots.

3 Hierarchical splines

We use the notations from the previous section in a hierarchical setting and define a hier-
archical spline space and a hierarchical basis. Finally we prove that the hierarchical basis
indeed spans the entire hierarchical spline space.

3.1 Hierarchies of tensor-product spline spaces

In order to define a hierarchical tensor-product spline space, we need to introduce a hierarchy
of tensor-product spline spaces and a hierarchy of domains.

First we consider the spline spaces. Given a maximum level N , we consider a sequence of

grids G`, ` = 0, . . . , N with associated degrees p` = (p
(1)
` , . . . , p

(d)
` ) where we assume that the

degrees do not decrease,

p` ≤ p`+1, i.e. p
(i)
` ≤ p

(i)
`+1, i = 0, . . . , d; ` = 0, . . . , N − 1 (9)
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Each grid hyperplane G
(i)
j,` ∈ G` has an associated multiplicity m

(i)
j,` which satisfies the as-

sumption (1) level by level.
We assume that the grids are nested in the following sense. Every grid hyperplane in G`

is also present in G`+1 and its multiplicity in the higher level is at least equal to the previous
multiplicity plus the increase of the degree in the corresponding coordinate direction.

Based on the sequence of grids and degrees, we now define on each grid G` the set of
tensor–product B–splines B` of degree p`. The span of the B-splines defines spline spaces
span B`, ` = 0, . . . N . Under the previous assumptions concerning non-decreasing degrees and
nested grids, the linear spaces spanned by the B-splines are nested,

span B` ⊆ span B`+1, ` = 0, . . . , N − 1.

For each level `, the grid G` and the degrees p` allow to apply the theory from the previous
section. Thus, given a multi-cell domain M ` with respect to the grid G`, one may define a
spline space S`(M `). The connected components of the B-splines B` with respect to

⋃
M `

form a basis of this space, according to Theorem 12.
Second we consider a nested sequence of domains

Ω0 ⊇ Ω1 ⊇ · · · ⊇ ΩN = ∅.

These domains are required to satisfy the following condition.

Assumption 15. We assume that each set

Ω0 \ Ω`+1, ` = 0 . . . N − 1,

can be represented as a multi–cell domain with respect to grid G`. More precisely, we assume
that there exists a multi-cell domain M ` ⊆ C`, which is a finite set of cells of the grid G`,
satisfying

Ω0 \ Ω`+1 =
⋃
M `.

From now on we will use M ` to denote this multi-cell domain. For convenience, we set⋃
M−1 = ∅.

The sets
⋃
M ` = Ω0 \ Ω`+1 were denoted as rings R` in [12], because, conceptually, they

represent the domain Ω0 with the “hole” Ω`+1. We will also adopt this notion. The above
assumption concerning the shape of the rings is actually weaker than the one in [12], where
each Ω` was assumed to be a multi–cell domain of level max(0, `− 1).

It should be noted that these rings are also nested,

Ω0 =
⋃
MN−1 ⊇

⋃
MN−2 ⊇ · · · ⊇

⋃
M0 ⊇

⋃
M−1 = ∅. (10)

Based on the sequences of function spaces and domains we are now able define the hierar-
chical spline space by the property, that the restriction of a function to each of the multi-cell
domains

⋃
M ` belongs to the corresponding spline space S`(M `):

Definition 16. The hierarchical spline space H is given by

H = {h : Ω0 → R | ∀` : h|⋃M` ∈ S`(M `)}.

The next section discusses the existence of a B-spline basis for this space.
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3.2 The basis of the hierarchical spline space

Recall that we defined a tensor–product spline basis B` on each grid G`. Similarly to (3) we
consider the B-splines whose support intersects the ring

⋃
M `,

B`
M` := {β ∈ B` | supp β ∩

(⋃
M `
)
6= ∅}.

Based on the definition of the rings, we again use the selection procedure from [12] which
slightly generalizes the earlier method proposed by Kraft in [17] by also allowing for coinciding
subdomain boundaries.

Definition 17. The hierarchical basis K is defined as

K =

N−1⋃
`=0

K`,

with
K` = {β ∈ B`

M` | supp β ∩
(⋃

M `−1
)

= ∅}.

It can be show that this set of B-splines is indeed linearly independent, see [17] or [27].
This follows directly from the local linear independence of the individual bases K` ⊂ B`.

Now we are able to formulate the main result of this paper.

Theorem 18. If the assumption of Corollary 13 is satisfied for each level `, i.e., provided
that all sets

supp β ∩
(⋃

M `
)
, ` = 0, . . . , N − 1; β ∈ B`,

are connected, then the hierarchical spline basis K from Definition 17 spans the entire space H.

Proof. The proof is very similar to the proof of Theorem 20 in [12]. Nevertheless, in order to
make this paper self–contained, we repeat it here with the new notation.

We show that any function h ∈ H can be obtained as a linear combination of functions
from K, i.e., h ∈ span K|Ω0 . This is proved in three steps.

• Step 1: There exist N functions

h` ∈ span B`
M` (` = 0, . . . , N − 1) (11)

such that

h`|⋃M` =

(
h−

`−1∑
i=0

hi

)∣∣⋃
M` . (12)

This we prove by induction:

For ` = 0 condition (12) reads h0|⋃M0 = h|⋃M0 . But since h|⋃M0 ∈ S0(
⋃
M0) and the

required assumption for
⋃
M0 is fulfilled, validity of (12) is granted by Corollary 13.

Now we consider a general value of `. This assumption also holds for
⋃
M `, so h|⋃M` ∈

span B`|⋃M` by Corollary 13. In addition, due to the induction assumption we have

hi ∈ span Bi
M i ⊆ span Bi,

hence also

hi|⋃M` ∈ span Bi|⋃M` ⊆ span B`|⋃M` = span B`
M` |⋃M` ⊆ S`(M `), i = 0, . . . , `− 1.

This implies (11).
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• Step 2: These functions satisfy

h`|⋃M`−1 = 0, ` = 0, . . . , N. (13)

Rewriting (12) gives

h|⋃M` =
∑̀
i=0

hi|⋃M` and also h|⋃M`−1 =
∑̀
i=0

hi|⋃M`−1 (14)

since
⋃
M `−1 ⊆

⋃
M `. Rewriting (12) with h`−1 gives

h|⋃M`−1 =
`−1∑
i=0

hi|⋃M`−1 ,

which, when compared with (14), gives the desired result.

• Step 3: These functions satisfy

h` ∈ span K` = span {β ∈ B`
M` | supp β ∩

(⋃
M `−1

)
= ∅} (15)

To see this, consider representation of h granted by (11):

h` =
∑

β∈B`
M`

cββ.

Equation (13) from Step 2 together with the local linear independence of basis functions
in B`

M` implies that for any function β with a nonempty intersection with
⋃
M `−1, the

coefficient cβ assigned to it is necessarily zero. This proves (15).

Finally, rewriting (12) for ` = N − 1 into the form

h|⋃MN−1 =

N−1∑
i=0

hi|⋃MN−1

concludes the proof, since
⋃
MN−1 = Ω0, hi ∈ span Ki and

⋃N−1
i=0 Ki = K.

The condition of Theorem 18 is satisfied if each subdomain Ω` is either sufficiently small
or sufficiently large with respect to the supports of the B-splines at the previous level. This
condition is slightly weaker than the condition which was used in [12].

Example 19. Consider the case where all degrees (at all levels and in all coordinate direc-
tions) are equal to p and all multiplicities of hyperplanes are equal to 1. In this case, the
condition is satisfied, if each Ω0 \Ω` admits a self-intersection-free offset at distance p/2 with
respect to the grid G`−1, or if each Ω` is contained in a box consisting of (p−1)×· · ·× (p−1)
cells of the grid G`−1, or if each Ω` is a disjoint union of sets possessing either property.
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4 Closure

We analyzed the dimensions and the bases of multivariate tensor-product spline functions
on a multi-cell domain. Based on theses results, by a slight generalization of the techniques
from [12], we derived a simple sufficient condition for the completeness of a hierarchical spline
space. More precisely, this condition guarantees that any piecewise polynomial functions
on the given hierarchical grid can be represented in the hierarchical tensor-product B-spline
basis.

Further work will focus on formulas for the dimensions for the spline spaces, which are
currently only given implicitly by the number of connected B-spline components, and on
the use of the truncated hierarchical B-spline basis, which should lead to weaker sufficient
conditions for the completeness of the hierarchical spline spaces.
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