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Abstract. The established construction of hierarchical B-splines starts
from a given sequence of nested spline spaces, and hence it is not possible
to pursue independent refinement strategies in different parts of a model.
In order to overcome this limitation, we generalize hierarchical B-splines
to sequences of partially nested spline spaces. We identify assumptions
that enable us to define a hierarchical spline basis, to establish a trunca-
tion mechanism, and to derive a completeness result. Finally, we present
an application to surface approximation to demonstrate the potential of
the proposed generalization.
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1 Introduction

Hierarchical tensor-product B-splines are one of the major approaches to per-
form local refinement in geometric modeling and isogeometric analysis, besides
splines defined by control meshes with T-junctions (T-splines), locally refined
(LR) splines and polynomial splines over hierarchical T-meshes (PHT-splines).
See [3, 15, 16] and the references therein for more information on the latter three.

Hierarchical spline refinement can be traced back to the work of Forsey and
Bartels [5] on surface design using locally defined control meshes. Based on a
selection mechanism, a system of basis functions spanning the resulting hierar-
chical spline space was established by Kraft in his PhD thesis [13]. Another basis,
which consists of truncated hierarchical B-splines, possesses improved properties
(increased locality, partition of unity and strong stability) and has been es-
tablished more recently [7]. Its properties regarding stability, completeness and
approximation power have been analyzed in greater detail [8, 17, 20].

Hierarchical B-splines have found numerous applications due to their good
mathematical properties. They were used for surface reconstruction in Computer-
Aided Design [9, 11]. Additionally, they were employed for performing numerical
simulations using the powerful framework of isogeometric analysis [1, 2, 14, 18].
The recent article [6] discusses the potential of the truncated basis for geometric
design and isogeometric analysis.
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In addition to the work on applications, several authors proposed various ex-
tensions and generalizations of the hierarchical construction. These include ex-
tensions to Powell-Sabin splines [19], box splines and doubly hierarchical splines
as instances of more general generating systems [22], B-splines on triangulations
[10], hierarchical T-splines [4], and functions defined by subdivision algorithms
[21, 23].

The established construction of hierarchical B-splines starts from a given se-
quence of nested spline spaces, and hence it is not possible to pursue independent
refinement strategies in different parts of a model. Such a possibility would be
highly useful when designing surfaces that possess creases or similar features,
and a related technique has been developed in the context of subdivision surface
modeling [12]. It might also open new perspectives for adaptivity in isogeomet-
ric analysis by providing the opportunity to use different refinement techniques
(such as h- versus p-refinement) in different parts of the computational domain.

The present paper proposes a generalization of hierarchical B-splines to se-
quences of partially nested spline spaces. In order to keep the presentation simple,
the discussion is limited to bivariate spline spaces of uniform degrees. We iden-
tify a number of assumptions that enable the definition of a hierarchical spline
basis, of a truncation operation to obtain the partition of unity property, and
the derivation of a completeness result.

The remainder of the paper consists of seven sections. We describe the frame-
work of our construction in the next section and establish a hierarchical spline
basis in Section 3. We then derive a characterization of the space spanned by
the basis and adapt the definition of the truncation operation to the non-nested
setting in the next two sections. The completeness properties of the basis are
analyzed in Section 6. We then present an application to least-squares approxi-
mation that demonstrates the power of the new construction before concluding
the paper with suggestions for future work.

2 Preliminaries

We consider a finite sequence of bivariate tensor-product spline spaces

V ` = spanB`, ` = 1, . . . , N,

which are spanned by spline bases B`. The upper index ` will be called the level.
Each of the spline spaces is defined on the open unit square (0, 1)2.

The spline bases B` consist of tensor-product B-splines that are defined by
two open knot vectors with boundary knots 0 and 1. We consider a uniform
polynomial degree p = (px, py) and use only single knots except for the boundary
knots that have multiplicity px + 1 and py + 1, respectively. The supports of the
basis functions are axis-aligned open boxes in (0, 1)2.

We use the subspace relation to restrict the natural ordering of the levels to
a partial ordering. We say that level k precedes level `, denoted by k ≺ `, if k is
less than ` and V k is a subspace of V `, i.e.

k ≺ ` ⇔ k < ` and V k ⊆ V `. (1)
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The spaces are not necessarily nested. If they are, however, then the finer space
is assumed to have the higher level, i.e.

V k ⊂ V ` ⇒ k ≺ `. (2)

Any finite sequence of spline spaces can be re-ordered such that this condition
is satisfied.

We present an example that will be used throughout the paper to illustrate
the discussion of notions and results.

Example. We consider C1-smooth biquadratic tensor-product spline spaces (px =
py = 2) on dyadically refined knots,

Dr,s = S2(0, 0, 0,
1

2r
, . . . ,

2r − 1

2r
, 1, 1, 1)⊗ S2(0, 0, 0,

1

2s
, . . . ,

2s − 1

2s
, 1, 1, 1),

where S2 denotes the univariate spline space defined by a given knot sequence,
with positive integers r, s. Among them we use the spaces

V 1 = D3,3, V 2 = D4,3, V 3 = D3,4,

V 4 = V 5 = D4,4, V 6 = D5,4, V 7 = D4,6,
(3)

which define the partial ordering

2 6≺ ≺ ≺
1 4 ≺ 5≺ ≺ ≺

3 7

(4)

of the seven levels. ♦

The functions in all spline spaces V ` are Cs-smooth on (0, 1)2, where the
order of smoothness is given by

s = (px − 1, py − 1). (5)

More precisely, they possess continuous partial derivatives of order px − 1 and
py − 1 with respect to x and y, respectively. We shall denote the set of all
functions on an open subset X ⊆ (0, 1)2 with this smoothness as Cs(X).

In addition to the spline spaces we consider an associated sequence of open
sets

π` ⊆ (0, 1)2, ` = 1, . . . , N,

which will be called patches. We assume that these are mutually disjoint,

π` ∩ πk 6= ∅ ⇒ ` = k.

We obtain the domain by collecting all the patches,

Ω = int

( N⋃

`=1

π`
)
⊆ (0, 1)2.
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(a) (b)

(c) (d)

Fig. 1. The subdivision of the domain into patches (a). The numbers (r, s) in each patch
specify the dyadically refined knot sequences that define the associated spline spaces.
The corresponding partially nested hierarchical mesh (b). Shadows (hatched area) and
selected basis functions (represented by their Greville points, which are shown as red
dots) of the patches π2 (c) and π6 (d).

The part of the boundary of each subdomain that is shared with subdomains
possessing a lower index,

Γ ` =
`−1⋃

k=1

πk ∩ π`,

is called the constraining boundary of the patch π`. Note that the constraining
boundary may be empty. In particular we have Γ 1 = ∅.
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Example. We consider again the spaces (3), which are defined by the dyadically
refined knot vectors. Figure 1a visualizes an associated sequences of patches,
which defines a subdivision of the domain Ω. In this case, the domain is also the
unit square. ♦

We conclude this section by defining the partially nested hierarchical spline
space

H = {s ∈ Cs(Ω) : s|π` ∈ V `|π` ∀` = 1, . . . , N}. (6)

It consists of all the Cs-smooth functions with the property that their restric-
tions s|π` to the patches are contained in the associated spline spaces V `|π` . In
particular, the space of tensor-product polynomials of degree p, restricted to the
domain Ω, is a subspace of H.

3 Basis functions

We define the basis by a selection procedure, which generalizes the definition of
Kraft’s basis for hierarchical B-splines. This procedure selects elements of each
spline basis B`. Among all B-splines that do not vanish on the patch π`, we
select the ones that take zero values on the constraining boundary Γ ` of that
patch, i.e.,

K` = {β` ∈ B` : β`|π` 6= 0 and β`|Γ ` = 0}.
Each set K` of selected functions defines the shadow of the associated patch π`,

π̂` = suppK` =
⋃

β`∈K`

suppβ`.

We collect the selected B-splines of all levels into the set

K =

N⋃

`=1

K`. (7)

We will denote this set of functions as PNHB-splines, since it consists hierarchical
B-splines defined by a partially nested sequence of spline spaces.

Example. We consider the PNHB-splines on the subdivision of the domain
which was shown in Fig. 1a. The selected function for the levels 2 and 6 are
visualized in Fig. 1c and 1d. The constraining boundary of π2 consists of the
line segment on the border with π1. The set K2 consists of 30 tensor-product B-
splines (note the Greville points on the domain boundary). The shadow defined
by them extends into the patches π4 and π7, covering π4 fully and π7 partially.
The constraining boundary of π6 consists of three line segments. The set K6

contains 144 tensor-product B-splines. The shadow defined by them is equal to
the patch, since the only non-constraining patch boundary is located on the
boundary of the domain Ω. ♦
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Table 1. Assumptions and acronyms.

Name Acronym Defined on page

Shadow Ordering Assumption SOA 6

Shadow Compatibility Assumption SCA 7

Constraining Boundary Alignment CBA 7

Full Boundary Alignment FBA 14

Support Intersection Condition SIC 14

The following condition is essential for proving the linear independence of
the PNHB-splines:

Assumption. If the shadow π̂` of the patch of level ` intersects another patch
πk of a different level k, then the first level is lower than the second one,

π̂` ∩ πk 6= ∅ ⇒ ` ≤ k. (SOA)

This will be called the Shadow Ordering Assumption (SOA).

We will use this assumption in the remainder of the paper. Since we will make
several further assumptions throughout the paper, we provide Table 1 containing
their names and acronyms, in order to guide the reader.

Theorem 1. The PNHB-splines are linearly independent on Ω if SOA holds.

Proof. The proof of linear independence follows an idea originally formulated
in [13], see also [7]. However, we will repeat it here in order to keep this paper
self-contained and in order to adapt it to the current setting. We need to prove
the implication

N∑

`=1

∑

β`∈K`

dβ`β` = 0 ⇒ dβ` = 0 ∀β` ∈ K` ∀` = 1, . . . , N. (8)

We first restrict the sum in (8) to π1. Due to SOA only functions β1 ∈ K1 are
non-zero on π1. The local linear independence of the B-splines B1 gives dβ1 = 0
for all β1 ∈ K1. This implies that the sum in (8) involves only functions with
` > 1.

We now consider the restriction of the sum to π2. Again, according to SOA
only the functions β2 ∈ K2 take non-zero values there. As the B-splines in B2

are locally linearly independent, we conclude that dβ2 = 0 for all β2 ∈ K2. By
repeatedly using the above argument, we eventually exhaust all the terms in (8),
which concludes the proof of linear independence. ut
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While the selection mechanism and SOA guarantee linear independence, they
do not ensure that the spline space spanned by PNHB-splines contains a class
of functions that guarantees certain approximation properties, such as tensor-
product polynomials of degree p. This is shown in the following example:

Example. We consider the two biquadratic spline spaces

V 1 = D3,0, V 2 = D1,1 (9)

and the two patches

π1 = (0,
1

2
)× (0, 1), π2 = (

1

2
, 1)× (0, 1). (10)

The first set K1 of selected functions consists of 18 tensor-product B-splines and
defines the shadow π̂1 = (0, 34 )× (0, 1). The second set K2 of selected functions
contains only 4 functions. The functions in K1 ∪ K2 are linearly independent
but cannot represent any biquadratic function on Ω. This can be seen easily by
analyzing the space which is spanned by the 4 functions in K2 and noting that
only these functions take non-zero values on ( 3

4 , 1)× (0, 1). ♦

4 The spline space

Consequently, we need to introduce further assumptions. We replace SOA by a
stronger condition, which will be used in the remainder of this paper.

Assumption. If the shadow π̂` of the patch of level ` intersects another patch
πk of a different level k, then the first level precedes the second one,

π̂` ∩ πk 6= ∅ ⇒ ` = k or ` ≺ k. (SCA)

This will be called the Shadow Compatibility Assumption (SCA).

In other words, the shadow π̂` intersects only patches that correspond to
spaces containing V ` as a subspace.

Example. We consider again the situation shown in Figure 1. The shadow π̂2

intersects π4 and π7. SCA is satisfied since 2 ≺ 4 and 2 ≺ 7, see (4). ♦

This condition obviously implies SOA. However, it turns out that SCA does
not yet suffice to prove that the space spanned by the PNHB-splines contains a
class of functions, which would guarantee certain approximation properties (e.g.
polynomials). We need to impose a condition on the location of the constraining
boundaries.

Assumption. For each level `, the constraining boundary Γ ` of the patch π`

is aligned with the knot lines of the spline space V `. This will be called the
Constraining Boundary Alignment (CBA) condition.
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More precisely, the constraining boundary Γ ` is either empty or is formed by
horizontal segments, vertical segments and isolated vertices, where not all these
features need to be present. We assume that the segments are all located on knot
lines of V ` and that the vertices are intersections of knot lines.

We will use both assumptions CBA and SCA in the remainder of the paper.
Under these assumptions we can characterize the spline space that is generated
by the PNHB-splines:

Theorem 2. The PNHB-splines span the partially nested hierarchical spline
space H if both SCA and CBA are satisfied.

We will need a technical lemma to prove this result. This lemma uses the
notion of homogeneous boundary conditions of order s. A function f is said to
satisfy these conditions at a point (x, y) if (ϑf)(x, y) = 0, where the operator

ϑ =
( ∂i
∂xi

∂j

∂yj

)
i=0,...,sx;j=0,...,sy

transforms a function into a matrix of dimension p that contains all the partial
derivatives up to order s. (Note here that 0 denotes the null matrix of dimen-
sion p, not a scalar.) In particular, this operator contains the evaluation of its
argument as its first element.

Lemma 1. The selected functions of level ` span the subspace

spanK` = {f ∈ V ` : (ϑf)|Γ ` = 0}|π`

of the associated spline space V `|π` on the patch π`, which consists of the restric-
tions f |π` of all functions f ∈ V ` that satisfy homogeneous boundary conditions
of order s on the constraining boundary Γ `, provided that CBA holds.

Proof. Firstly we show that all selected functions of level ` satisfy the homoge-
neous boundary conditions of order s on the constraining boundary Γ `.

Consider a selected tensor-product B-spline β` ∈ K`. Each point (x, y) ∈ Γ `
of the constraining boundary does not belong to the support suppβ`. This point
thus either belongs to the boundary of the support, or it is even farther away from
the support. The tensor-product B-spline β` satisfies homogeneous homogeneous
boundary conditions of order s at (x, y) in both cases, since it is Cs-smooth.

Secondly we show that the restriction f |π` of any function f ∈ V `, which
satisfies the homogeneous boundary conditions of order s on the constraining
boundary Γ `, can be represented as a linear combination of the selected functions
K`. Obviously, the restriction possesses a representation of the form

f(x) =
∑

β`∈B`

suppβ`∩π` 6=∅

cβ`β`(x), x ∈ π`. (11)

We consider a function β` ∈ B` \K` that does not vanish on π`. There exists
an isolated vertex v or a (horizontal or vertical) segment L of the constraining
boundary such that β` takes non-zero values there.
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In the case of an isolated vertex, the matrix (ϑf)(v) depends on px × py
spline coefficients due to CBA, and one of them is cβ` . The matrix has the same
dimensions, cf. (5), and the linear mapping that transforms the spline coefficients
into the matrix elements has full rank, simply because the spline function can
take any values of (ϑf)(v). Thus we conclude that cβ` = 0 if (ϑf)(v) = 0.

In the case of a segment L we choose a (sub-) segment L′ which is contained
in only one knot span, and consider the tensor-product Bernstein–Bézier (BB)
representation of f with respect to a sufficiently small axis-aligned box in π` with
this segment on its boundary. More precisely, this box is chosen such that it is
simultaneously located within π` and in one of the tensor-product knot spans
of V `.

The elements of the matrix (ϑf)|L′ depend on the px + 1 columns (each of
height py) of adjacent BB coefficients for a horizontal segment, and on the py+1
rows (each of width px) of adjacent BB coefficients for a vertical segment. The
matrix is equal to the null matrix on L′ if and only if all these BB coefficients
are equal to zero.

Due to CBA, these BB coefficients depend on the same number of spline
coefficients, and cβ` is one of them. The linear mapping that transforms the
spline coefficients into the considered BB coefficients has full rank, since any
tensor-product polynomial of degree p is contained in the spline space V `. Thus
we conclude that cβ` = 0 if (ϑf)|L′ = 0. ut

We now proceed with the proof of the Theorem:

Proof (Theorem 2). Given a function f ∈ H, we consider its restriction to the
patch of level 1 and find a representation

f(x) =
∑

β1∈K1

cβ1β1(x), x ∈ π1. (12)

It exists since f |π1 ∈ V |π1 according to the definition of H and because the
associated constraining boundary is empty. We use this local representation to
derive the globally defined level 1 representation

f1(x) =
∑

β1∈K1

cβ1β1(x), x ∈ Ω.

We now proceed by iterating over the remaining levels ` = 2, . . . , N . In each
level, we consider the restriction of

f −
`−1∑

k=1

fk

to the patch π` and its local representation

f(x)−
`−1∑

k=1

fk(x) =
∑

β`∈K`

cβ`β`(x), x ∈ π`, (13)
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which leads to the globally defined level ` representation

f `(x) =
∑

β`∈K`

cβ`β`(x), x ∈ Ω. (14)

The existence of a local representation (13) with respect to the full basis B` is
guaranteed by f |π` ∈ V |π` according to the definition of H, and by using SCA.
This confirms that the function on the left-hand side of (13) is contained in
V `|π` . Additionally, we use the fact that

f(x)−
`−1∑

j=1

f j(x) = 0, x ∈ πk, k < `, (15)

which follows immediately from the definition of f j . Combining this observation
with the Cs-smoothness of f gives the homogeneous boundary conditions of order
s on the constraining boundary Γ `. Finally, these conditions enable us to apply
Lemma 1, which confirms that only the selected functions K` ⊆ B` are needed
in (13).

We conclude the proof by noting that (15) is satisfied since Eqns. (13) and
(14) imply

f(x)−
`−1∑

k=1

fk(x) = f `(x), x ∈ π`,

while SOA means that increasing the level ` does not affect the values on patches
of lower levels. In particular we choose ` = N + 1 in (15) and arrive at

f(x) =

N∑

k=1

fk(x), x ∈ Ω. ut

In particular this proves that every tensor-product polynomial of degree p can
be represented as a linear combination of PNHB-splines, since these polynomials
belong to the partially nested hierarchical spline space.

5 Truncation

We define the truncated PNHB-splines by suitably generalizing the truncation
mechanism, which has been established in [7]. These functions are linearly in-
dependent, form a partition of unity, and span the partially nested hierarchical
spline space H.

We consider a fixed level ` and a function

f ∈ span
`−1⋃

k=1

Kk, (16)
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which is a linear combination of all tensor-product B-splines that have been
selected at lower levels. SCA then implies that

f |πk ∈ V k|πk , k = 1, . . . , `,

for all levels that do not exceed `. When restricted to the patch π`, this function
possesses a unique local representation

f(x) =
∑

β`∈B`

suppβ`∩π` 6=∅

cβ`β`(x), x ∈ π`, (17)

as a linear combination of tensor-product B-splines in B`. We now define the
truncation of f with respect to K` as the globally defined function

(trunc`f)(x) = f(x)−
∑

β`∈K`

cβ`β`(x), x ∈ Ω, (18)

where the coefficients c`β are taken from the representation (17). Combining this
definition with (16) implies that

trunc`f ∈ span
⋃̀

k=1

Kk.

Consequently we are now able to apply truncation of the next higher level `+ 1
to trunc`f .

For future reference we note that the trunction with respect to level ` does
not change the value of the function on patches of previous levels,

f |πk = (trunc`f)|πk if k < `. (19)

This is a direct consequence of SOA. We also note that

(trunc`f)|π` ∈ span(B` \K`)|π` . (20)

This can be confirmed by combining the local representation (17) with the defi-
nition (18) of the truncation.

We define truncated PNHB-splines of level ` by applying the truncation re-
peatedly to the selected tensor-product splines in K` of all levels,

T ` = truncN · · · trunc`+1K` = { truncN · · · trunc`+1β` : β` ∈ K` }. (21)

Collecting the contributions from all levels gives the set of truncated PNHB-
splines

T =

N⋃

`=1

T `. (22)
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Lemma 2. We assume SCA and consider a selected B-spline β` ∈ K` of level
` and a lower level k ≤ `. Then

(truncN · · · trunc`+1β`)|πk =

{
0 if k < `

β`|πk if k = `.
(23)

Moreover, for larger levels k > ` we have

(truncN · · · trunc`+1β`)|πk ∈ span(Bk \Kk)|πk . (24)

Proof. Due to SCA we have that

β`|πk =

{
0 if k < `

β`|πk if k = `.

This implies (23) since the truncations with respect to the levels `+ 1, . . . , N do
not change the values on πk according to (19).

To prove the second equation (24) we first observe that (20) gives

(trunck · · · trunc`+1β`)|πk ∈ span(Bk \Kk)|πk ,

and note that the remaining truncations with respect to the levels k + 1, . . . , N
do not change the values on πk according to (19). ut

Proposition 1. The truncated PNHB-splines are linearly independent if SCA
is satisfied.

Proof. We use Eq. (23) and proceed as in the proof of Theorem 1. ut

Proposition 2. The truncated PNHB-splines span the partially nested hierar-
chical spline space H if both SCA and CBA hold.

Proof. The definition of truncation implies that every function in T can be
represented with respect to K. Indeed, a function truncN · · · trunc`+1β` for
β` ∈ K` is obtained by subtracting contributions of function included in Kk

for k = ` + 1, . . . , N . Hence, it can be written as a linear combination of func-
tions in K, and consequently, spanT ⊆ spanK. Since both T and K are linearly
independent, and since |T | = |K|, we conclude that spanT = spanK. Finally,
we use Theorem 2 to complete the proof. ut

Similar to [8] we show that the functions in T preserve the coefficients of the
corresponding selected functions in K`.

Theorem 3 (Preservation of coefficients). Any function f ∈ H possesses
local representations

f(x) =
∑

βk∈Bk

suppβk∩πk 6=∅

cβkβk(x), x ∈ πk, (25)
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on the patches. The representation with respect to the truncated PNHB-splines
inherits the coefficients cβk from these local representations,

f(x) =
N∑

`=1

∑

β`∈K`

cβ`(truncN · · · trunc`+1β`)(x), x ∈ Ω,

provided that SCA and CBA are valid.

Proof. Proposition 2 guarantees that there exists a representation of f ∈ H with
respect to T ,

f(x) =
N∑

`=1

∑

β`∈K`

dβ`(truncN · · · trunc`+1β`)(x), x ∈ Ω,

with certain coefficients dβ` . We consider the restriction of this representation
to the patch πk of level k. All terms obtained for ` > k do not contribute to this
restriction, according to (23). This also implies that the PNHB-splines of level k
are simply tensor-product splines on πk. Using these two observations we obtain

f(x) =
k−1∑

`=1

∑

β`∈K`

dβ`(truncN · · · trunc`+1β`)(x) +
∑

βk∈Kk

dβkβk(x), x ∈ πk.

(26)
We note that the first sum is contained in (Bk\Kk)|πk , due to (24). Consequently
we may use the linear inpendence of the tensor-product B-splines (Bk)|πk on the
patch of level k to conclude

dβk = cβk , ∀βk ∈ Kk,

by comparing the coefficients of (25) and (26). ut

The property of preservation of coefficients implies that the functions in T
form a partition of unity:

Corollary 1. The sum of the truncated PNHB-splines is the constant function
with value 1 if both SCA and CBA are valid.

Proof. Since the constant function with value 1 is contained in H, we may con-
sider its representations (25) on all patches πk, with the coefficients cβk = 1.
Theorem 3 confirms the partition of unity property of truncated PNHB-splines.

ut

Similarly, the function truncN · · · trunck+1βk has the same Greville abscissa
as its corresponding function βk ∈ Kk from which it was derived by using
truncation.
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6 Completeness

The knot lines of each spline space V ` define a subdivision of the unit square
(0, 1)2 into the mesh M ` of level `. More precisely, the elements of M ` are
axis-aligned boxes, which are the Cartesian product of two closed intervals that
represent knot spans of V ` in x- and y-direction. These elements will be denoted
as cells of level `

Another assumption, which is stronger than CBA, is required to investigate
the completeness of the PNHB-splines:

Assumption. The boundaries of the patches π` are aligned with the mesh of
level `. More precisely, each patch π` is obtained as the interior

π` = int
⋃

c∈C`

c (FBA)

of the union of a cell set C` ⊆M `. This condition will be called the Full Boundary
Alignment (FBA) condition.

The union of the cell sets C` over all levels forms the partially nested hierar-
chical mesh.

Example. We consider again the partially nested hierarchical spline space,
which is defined by the patches and spaces shown in Figure 1a. The partially
nested hierarchical mesh

⋃N
`=1 C

` are shown in Figure 1b. ♦

In this section we are interested in the full spline space F of degree p and
maximal smoothness s = p− (1, 1),

F = {f ∈ Cs(Ω) : f |c ∈ Πp ∀c ∈ C` ∀` = 1, . . . , N}, (27)

where Πp denotes the space of tensor-product polynomials of degree p. This
space contains the partially nested hierarchical spline space H, but it is generally
larger. A simple condition implies that both spaces are equal:

Assumption. The support intersections of the basis functions of level ` with
the associated patches π` are all connected,

suppβ` ∩ π` is connected ∀β` ∈ B`, ` = 1, . . . , N. (SIC)

This will be denoted as the Support Intersection Condition (SIC).

If this assumption is satisfied in addition to all previous ones, then PNHB-
splines are complete.

Theorem 4. The PNHB-splines span the full spline space if FBA, SIC and
SCA are satisfied.
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Proof. Given a function f ∈ F , we proceed exactly as in the proof of Theorem
2. There is one modification, however, since we need to use a different argument
to confirm the existence of the local representations (12) and (13).

This is achieved with the help of a result from [17]: Each patch π` is a multi-
cell domain due to FBA. Theorem 2.12 of that paper implies that we obtain
local representations as linear combinations of tensor-product B-splines β` if
one uses several copies for functions with more than one support intersection.
More precisely, when considering the function in (13) we obtain

f(x)−
`−1∑

k=1

fk(x) =
∑

β`∈B`

∑

σ
σ is connected
component of

suppβ`∩π`

cβ`,σβ
`(x)χσ(x), x ∈ π`,

where χσ(x) is the characteristic function of the connected component σ.
SIC implies that only one instance of each such function is required, as their

support intersections with π` possess only one connected component σ. Lemma
1 can be applied again and confirms that only functions β` ∈ K` need to be
considered. Consequently, we can find a representation of the form (13) (and
also (12) for the first level).

The remainder of the proof applies without any modifications. ut
Since PNHB-splines span the partially nested hierarchical spline space H, we

also proved that the full spline space is equal to the partially nested hierarchical
spline space under the assumptions of the theorem. All these results apply to
truncated PNHB-splines as well.

7 An example: Least-squares fitting

We consider a surface approximation problem to compare PNHB-splines with
classical tensor-product B-splines and hierarchical B-splines. We choose the func-
tion

f(x, y) = 0.6




10∑

i=0




10∑

j=0

dijbi(x)bj(y)


+ (x− 0.5)2


 ,

which is constructed by multiplying the elements of the tensor-product basis
constructed from the univariate Bernstein polynomials

bk(t) =

(
10

k

)
tk(1− t)10−k, for k = 0, . . . , 10,

of degree 10 with the function-valued coefficients

D = [dij ] =




1 + sin(60x) 1 · · · 1 1
1 1 . . . 1 1
...

...
...

...
1 1 . . . 1 1
1 1 · · · 1 1 + sin(60y)



,
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see Fig. 2. Its domain is the unit square (0, 1)2. This function is fairly flat in
most parts of the domain, but has distinctive vertical and horizontal features in
the southwest and the northeast corners of the domain, which motivates us to
use partially nested spline refinement.

Fig. 2. The function considered in the fitting example.

We use a simple least squares approximation to project this function into
spline spaces spanned by

1. biquadratic tensor-product B-splines defined on the mesh shown in Fig. 3a,
2. hierarchical B-splines defined on the mesh shown in Fig. 3b, and
3. partially nested hierarchical B-splines defined on the mesh shown in Fig. 3c.

For tensor-product splines, we consider a vertical and horizontal refinement in
the southwest and northeast corner. These knot lines propagate to the northwest
corner since tensor-product splines do not support local refinement. This is not
the case for HB-splines, where we can perform local refinement. Nevertheless,
one still needs to use nested splines spaces, which enforces the simultaneous
refinement in both directions. Therefore, we add knot lines in x- and y-direction
in both considered corners. Finally, we show the mesh used for PNHB-spline
approximation. It seems to be perfectly suited for this task as the knot line
segments are aligned with the features of the function.

The numerical results are reported in Table 2, which presents information
about the number of degrees of freedom, the percentage of degrees of freedom,
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Fig. 3. The meshes used for defining the approximating spline functions. Left: tensor-
product B-splines, middle: HB-splines, right: PNHB-splines.

the maximum error between the original function and the fitting result and the
average error.

The tensor-product splines provide the baseline for these tests. The number
of control points is equal to 2304, and this is sufficient to obtain a reasonable
result. By using hierarchical B-splines we saved some degrees of freedom and
obtained a similar result. We used spline spaces Di,i for i ≤ 6. Further refinement
in the corners would substantially increase the number of degrees of freedom.
Finally, the use of PNHB-splines leads to an additional improvement: a better
approximation is obtained by using a substantially smaller number of degrees of
freedom.

no. of dof % of dof. max. error average error

tensor-product B-splines 2304 100% 3.39e-3 3.81e-5
HB-splines 1633 71% 3.08e-3 4.37e-5
PNHB-splines 769 33% 8.12e-4 1.89e-5

Table 2. Numerical results of the least-squares approximation.

So far we constructed the meshes manually. Our current work is devoted to
the use of error estimators for automating this process.

8 Conclusion

We proposed the new construction of partially nested hierarchical B-splines in or-
der to overcome the limitations of the existing hierarchical spline constructions,
which are based on sequences of fully nested spline spaces. Suitable assump-
tions enabled us to define a hierarchical spline basis, to establish a truncation
mechanism, and to derive a completeness result. The application potential of the
proposed generalization has been demonstrated by a first experimental result on
least-squares approximation.
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Future work will be devoted to extensions of this construction to the full
multivariate case and to refinement strategies that can guide the process of local
mesh refinement. Further we plan to complete the analysis of the truncated
spline basis by analyzing its non-negativity, since our attempts to establish this
property did not succeed so far. Furthermore, we will also explore the application
potential of our new construction.
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the Austrian Science Fund and the EC projects “EXAMPLE”, GA no. 324340
and “MOTOR”, GA no. 678727.
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23. U. Zore, B. Jüttler, and J. Kosinka. On the linear independence of truncated
hierarchical generating systems. J. Comput. Appl. Math., 306:200–216, 2016.


