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The isogeometric segmentation pipeline

Michael Pauley, Dang-Manh Nguyen, David Mayer, Jaka Špeh, Oliver Weeger,
Bert Jüttler

Abstract We present a pipeline for the conversion of 3D models into a form suit-
able for isogeometric analysis (IGA). The input into our pipeline is a boundary
represented 3D model, either as a triangulation or as a collection of trimmed non-
uniform rational B-spline (NURBS) surfaces. The pipeline consists of three stages:
computer aided design (CAD) model reconstruction from a triangulation (if nec-
essary); segmentation of the boundary-represented solid into topological hexahe-
dra; and volume parameterization. The result is a collection of volumetric NURBS
patches. In this paper we discuss our methods for the three stages, and demonstrate
the suitability of the result for IGA by performing stress simulations with examples
of the output.

1 Introduction

In isogeometric analysis (IGA), the space of functions used to approximate the so-
lution of a differential equation is the same space of functions used to represent
the geometry. As such, IGA methods work directly with geometry represented by
splines and have begun to close the gap between the geometry representations used
for analysis and those used for design [1]. An additional benefit of IGA is that it can
achieve the same accuracy as the finite element method (FEM) with fewer degrees
of freedom (see [4]).
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In order to realize the benefits of IGA when dealing with complex geometries,
it is necessary to segment them into IGA-suitable pieces. A rich theory of FEM-
suitable mesh generation exists (see e.g., [5, 8, 14, 15, 17, 21, 24]) but these methods
aim at a segmentation of a solid into a large number of (approximately uniform)
small tetrahedra and hexahedra. The goal of the isogeometric segmentation pipeline
is to convert a boundary represented model (e.g. something designed in computer
aided design (CAD) software) into an IGA-suitable volumetric model. For us this
means segmenting the geometry into a small number of topological hexahedra, that
is, deformed cubes.

Methods for parameterization of solids by a single B-spline or T-spline cube are
developed in [13, 20, 25, 26]. A method for multiple patches is given in [22] which
requires a predefined segmentation as input. Several papers [9, 10, 19, 23] provide
methods for segmentation and parameterization of a solid by B-spline or T-spline
cubes, allowing for singularities in the output.

The input into the pipeline can be either a triangulated boundary representation,
or a trimmed non-uniform rational B-spline (NURBS) surface boundary represen-
tation. A trimmed surface consists of a master spline mapping a square into R3,
together with a collection of trimming curves defining a domain of the surface as
a subset of the square. The boundary representation for the pipeline consists of a
collection of trimmed surfaces, together with adjacency information. The output of
the pipeline is a representation of the solid as a collection of volumetric NURBS.
The pipeline consists of the three following stages.

CAD model reconstruction. A triangulated model is converted into a trimmed
NURBS surface boundary representation, for input into the remaining stages. This
step is not necessary for models that are already represented with trimmed surfaces.
It is necessary when only a triangulated solid is available, or when CAD data is
available but uses features not supported by the remainder of the pipeline. In the
latter case, the CAD model can be triangulated and then reconstructed to produce a
solid in a format compatible with the pipeline.

Isogeometric segmentation. A trimmed NURBS surface boundary represented
solid is segmented into a collection of boundary represented topological hexahedra.
Our segmentation approach, which began development in [6, 11], is based on the
edge graph of the solid – the graph defined by the vertices and edges between the
trimmed surfaces.

In its present state, our isogeometric segmentation method requires manual in-
teraction in two scenarios. Firstly, it is applicable to the class of contractible solids
with 3-vertex-connected edge graphs. This means that a manual preprocessing step
is required to ensure that the input satisfies these assumptions. In our ongoing work
we are developing methods to automatically ensure these assumptions. Secondly, a
post-processing step may be necessary if the segmentation is required to be free of
T-joints. So far, we only have a way to eliminate them in special cases. Our belief
is that T-joints will not be a barrier to IGA, as contemporary research is developing
methods for handling non-matching interfaces ([7]).

Volume parameterization. A collection of boundary represented topological hex-
ahedra is converted to a collection of volumetric splines.
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(a) (b) (c)

Fig. 1 (a) The triangulated car part. (b) The model is separated into regions. We highlight one here.
(c) The CAD model reconstruction (translucent).

Sections 2, 3, 4 of the paper provide details and examples for the above stages of
the pipeline. In Section 5, a segmentation produced by our pipeline is used to con-
duct mechanical simulations, showing the suitability of our results for isogeometric
analysis. Section 6 summarizes the state of the pipeline and outlines our ongoing
and future work.

2 Segmentation of triangulated surfaces and CAD model
reconstruction

Consider a complex model for which IGA-based simulation is required. If a col-
lection of trimmed NURBS surfaces is provided describing its boundary, we can
segment it into topological hexahedra using the methods in Sections 3 and 4. How-
ever, often we only have access to a triangular mesh describing the boundary. This
would happen, for example, if a triangulation of a model is available but the orig-
inal model is not. Furthermore, if a CAD model is of low quality or uses features
that are not supported by the segmentation software, it is useful to convert it into a
triangle mesh from which a more suitable trimmed surface model can be created.
Finally, a more complex CAD model is often obtained by combining several models
produced by several users, possibly with different CAD systems. In this situation,
using a triangulated CAD model is often the only feasible option.

Sophisticated methods exist for the reverse engineering of CAD data (see [18]
and its references). The method we use can afford to be relatively straightforward
because (i) we are primarily interested in engineering objects, which tend to have
simple faces and sharp edges, compared to general, more free-form designs; (ii) we
assume a high quality triangulation is provided as input, not noisy point cloud data;
(iii) while more sophisticated methods can reproduce blend surfaces, we do not want
them as the later stages of our pipeline are not prepared to deal with them.

• The triangulated boundary is segmented into regions using a region growing al-
gorithm. Two triangles are part of the same region if there exists a path between
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Fig. 2 The region growing algorithm segments the triangulation of the TERRIFIC demonstrator
part into 9 regions. Different regions are shaded different colors.

Fig. 3 Example of a NURBS trimmed surface fit to triangulated data.

them which passes only between triangles that meet at an angle close to π . Post-
processing can be applied to further segment the large regions with a more strict
angle tolerance, or to merge small regions with a less strict angle tolerance. An
example is shown in Figure 2.

• For each region, a triangulated domain is constructed whose triangles are in cor-
respondence with the triangles of the region. The points in the interior of the
domain, and the positions of holes in the domain, are chosen by a method based
on [2, 3].

• A tensor product NURBS master surface is constructed, by fitting the triangula-
tion data using a least-squares approach. Finally, sharp corners in the domains
are smoothed out where appropriate. An example of a surface fit to a detected
region is shown in Figure 3.

2.1 Examples

We demonstrate the procedure with the following examples.

Car part example. The procedure is applied to a car part consisting of 1220 tri-
angles. Angle tolerance is set to 40◦ and a secondary region growing phase is
applied, with a tolerance of 20◦, to those regions with area more than 20% of the
average. The result is shown in Figure 1 (a–c).
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Fig. 4 The TERRIFIC Demonstrator: reconstructed CAD model.

TERRIFIC Demonstrator. The TERRIFIC demonstrator model was created as
part of the TERRIFIC European Commission project for testing and demon-
strating the project’s research and development. The demonstrator in its original
format is a boundary represented CAD model. However, feeding a triangulated
version of the model through the CAD model reconstruction step allows us to
clean the model up, eliminating the blends which the later steps of our pipeline
do not support.
The model has 3672 triangles. The region growing algorithm is used with a cutoff
of 12◦ and regions are merged together if they have area less than 200% of the
average. The result is shown in Figure 4.

3 Isogeometric segmentation of boundary represented solids

Here we describe our approach to the problem of segmenting a boundary-represented
solid into topological hexahedra. The solid has sharp features, and its faces are de-
scribed by NURBS-based trimmed surfaces.

The faces, edges and vertices of the solid form a structure called the edge graph
of the solid (see Figure 5). A graph is 3-vertex-connected if it is connected, it has at
least 4 vertices and any 2 vertices can be deleted without disconnecting the graph.
We make the following assumptions about the solid:

• the solid is contractible;
• the edge graph is simple and 3-vertex-connected.

Once these assumptions are satisfied, we have an automatic process to obtain a
segmentation into topological hexahedra. The process is as follows.

1. Ensure that the solid satisfies the assumptions.
2. For each existing non-convex edge, segment the solid using a cutting loop (Sec-

tions 3.1, 3.2) or an extending loop (Section 3.4) containing the edge.
3. If the solid has no non-convex edges, segment it further using cutting loops until

we arrive at pre-defined base solids.
4. Segment the base solids in a predefined way into topological hexahedra.

Item 1 above is ongoing work: methods based on the concept of a Reeb graph from
Morse theory, which has previously been used to good effect in flow volume decom-
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Fig. 5 An example of a contractible solid and a planar representation of its edge graph.

(a) (b) (c)

Fig. 6 (a) The TERRIFIC Demonstrator, preprocessed to cut it into contractible pieces with 3-
vertex-connected edge graphs. (b) Segmentation into topological hexahedra. (c) The solid is further
segmented to eliminate T-joints.

position ([16]), show promise for dealing with non-contractible solids. Items 2–4
are explained below in Sections 3.1–3.4.

Figure 6 shows an example: this stage of the pipeline is applied to the TER-
RIFIC demonstrator. The demonstrator is first preprocessed to cut it into contractible
pieces and artificial edges are added to make its graph 3-vertex-connected. Then
these pieces are segmented into hexahedra using the methods of cutting loops and
extending loops described in the following sections.

3.1 Theory for contractible solids with only convex edges

An edge e of the solid is convex at a point p if the two incident faces at e meet
at a convex interior angle at p. The edge e is called convex if it is convex at every
point, and non-convex otherwise. Non-convex edges have a significant impact on
the options for segmentation. In this section we restrict to solids with no non-convex
edges; we extend our approach to the more general case in Section 3.2.

Our approach is based on the concept of a cutting loop; a cycle in the edge graph
consisting of existing edges as well as auxiliary edges which can be created between
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Fig. 7 A solid with a non-convex edge. The edge graph is isomorphic to that of a cube. However,
the non-convex edge prevents C1 volume parameterization by a cube. The segmentation algorithm
eliminates non-convex edges as its first priority so that the resulting topological hexahedra have
only convex edges.

any two vertices on the same face. A cutting loop is valid if it can be used as the
boundary of a surface with the following properties:

• the surface is contained in the solid;
• the surface cuts the solid into exactly 2 pieces;
• both pieces satisfy our original assumptions, i.e., they are contractible and the

edge graphs are simple and 3-vertex-connected.

For solids with only convex edges, validity is essentially a combinatorial condition,
i.e., the structure of the graph matters but the geometry of the trimmed surfaces does
not. This allows us to guarantee the existence of a valid cutting loop.

Theorem 1 ([6]). Assume that all edges are convex. If the edge graph of the solid is
not that of a tetrahedron, then a valid cutting loop exists.

3.2 Theory for contractible solids with non-convex edges

Non-convex edges create additional complications. They must be eliminated during
the segmentation process, because they prevent smooth parameterization (see Fig-
ure 7). Furthermore, they create new validity criteria for cutting loops, which can
sometimes require auxiliary vertices (new vertices created along the existing edges
of the edge graph) to guarantee the existence (See [11, Section 3]).

Theorem 2 ([11]). Given a non-convex edge of the solid, there exists a valid cut-
ting loop containing that edge and possibly containing auxiliary vertices, such that
cutting the solid with this loop eliminates the non-convex edge.

This enables an extension of the algorithm outlined in Section 3.1. Cutting loops are
used to cut the solid to remove all the non-convex edges. Once the solid has been
segmented into pieces with only convex edges, the method of Section 3.1 can be
applied.
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Fig. 8 Left: a solid with a non-convex edge CF . Without using auxiliary vertices, there is no valid
cutting loop to cut CF , but it becomes possible with the addition of the vertices G and H.

3.3 Description of the algorithm

Theorems 1 and 2 mean that the following algorithm successfully segments the solid
into topological hexahedra, given its edge graph structure:

• search for a valid cutting loop;
• use the cutting loop to construct a surface which cuts the solid into two pieces.

The geometric aspects of this step are difficult. Firstly, any auxiliary edges of
the loop must be turned into real edges by constructing a curve cutting the face.
This problem is dealt with in the paper [12]. Secondly, a trimmed surface must
be constructed having the cutting loop as its boundary;

• repeat the procedure for the two pieces until we arrive at base solids: a class
of solids which have predefined segmentations into topological hexahedra. Our
base solids include tetrahedra, hexahedra and prisms.

Each of the base solids is further split into topological hexahedra using pre-defined
templates. More details of the algorithm are provided in [6, 11].

Typically, many valid cutting loops exist so a decision procedure is needed to pick
one. We decide based on a cost which is a combination of the following components:

Combinatorial component. Aiming for a small number of hexes, our cost includes
a component based on the graph theoretic structure:

• the number of edges of the cutting loop (e.g. preferring loops of length 4 since
they more quickly lead to topological hexahedra).

• the number of edges of the newly created faces when a face is split by an
auxiliary edge (e.g. preferring to split a 6-sided face into two 4-sided faces vs.
a 5- and a 3-sided face).

Geometric component. Aiming for hexes with good shape, we include measure-
ments of the planarity of the cutting loop.

A more detailed discussion, with examples, is provided in [11, Sections 5–6].
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3.4 Surface extension

The cutting loop approach can sometimes miss elegant segmentations that could
be created by extending existing surfaces. For example, [11] provided an example
where using the cutting loop method alone results in a segmentation with 31 topo-
logical hexahedra. Furthermore, they do not have ideal shape. Extending existing
faces would allow a segmentation with only 4 hexes and higher quality shape (see
Figure 9). Surface extension can be done by modifying cutting loops into extend-
ing loops (see Figure 10). In contrast to cutting loops, extending loops result in the
construction of two different faces for the two new solids.

Extending loops can be defined as cutting loops with additional structure: each
edge of the loop carries data of whether it extends one of the two incident faces, and
if so, which one. The validity of an extending loop can be determined from the way
faces meet at vertices and edges. Specifically,

• it is only possible to extend a surface through a given edge e if e is everywhere
concave. This is because, if e is convex at any point, then the surface would be
extended to outside the solid;

• at a vertex v, consider the set of unit tangent vectors pointing into the solid.
This set is a region of the unit sphere, whose boundary is a spherical polygon.
See Figure 11 for an example. Three faces A,B,C of a solid meet at a vertex
v; the resulting spherical polygon has three corresponding great arcs Ã, B̃, C̃.
The geometry of this polygon determines the options available for extending a
surface through v. In the example of Figure 11, face B can be extended through
v, resulting in face A being cut. This is because extending arc B̃ into the interior
of the spherical polygon, it eventually intersects arc Ã. A similar situation arises
when extending face C.
A slightly different situation occurs for extending face A through v. If arc Ã is
extended into the interior of the polygon, it does not intersect the interior of any
of the other arcs, but instead closes up into a great circle. As a consequence, face
A can be extended through v in such a way that the vertex v can be deleted from
one of the two solids resulting from the cut. The question of whether two faces,
meeting at a vertex, can be extended simultaneously into a single face, can also
be answered using the geometry of the spherical polygon.
Compare these facts with [11, Proposition 2], where it is shown that the spherical
visibility problem for the spherical polygon constructed above plays an important
role in determining the validity of a cutting loop.

Two possible results of cutting the solid of Figure 11 (left) are shown in Figure 12.
The selection of an extending loop is similar to one for a cutting loop. A cost

is assigned based on combinatorial and geometric properties. Minor complications
arise from the fact that vertices can be deleted, and the new faces in the two resulting
solids can have a different number of vertices.

There remains the question of the geometric realization of the extended surface,
i.e., how do we construct the NURBS-based trimmed surface structure for a face
which includes the existing face(s) and the newly constructed part? This question is
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(a) (b)

Fig. 9 Half-chair example. The solid in (a) was segmented into 31 topological hexahedra in [6].
However, a segmentation into just 4 topological hexahedra can be produced by extending the faces
marked in (b) and merging them together as the first step. This motivates our ongoing work on
automatic surface extension as a step in the segmentation procedure.

A B C
D

E
F

Fig. 10 Example of a solid with some surfaces that can be extended. Loop A-B-C-E-F is an
extending loop which can be used to extend the highlighted face and cut the solid. An extending
loop cannot contain the path A-B-C-D due to the geometry at vertex C.

still open; our current attitude is that it is better to only construct the new part, repre-
sent the extended face as a union of trimmed surfaces, and merge them together only
at the time of volume fitting. This avoids creating an extra source of approximation.

Examples

We demonstrate the segmentation process for several models. For these models, a
preprocessing step is applied to ensure that the model is contractible and the edge
graph is simple and 3-vertex connected. This pre-processing step is ad-hoc as we
have not developed a general method.

10



v
A

B

C

Ã
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Fig. 11 In the solid (left), three faces A,B,C are incident to a vertex v. The unit vectors at v
pointing into the solid define a filled spherical polygon with arcs Ã, B̃, C̃ containing the tangent
vectors pointing along the faces A,B,C. The geometry of the spherical polygon determines the
available options for extending these faces through v.

Fig. 12 Two possible results of cutting the solid of Figure 11 (left) by extending surfaces.

Fig. 13 The chair stand example. This solid has a 5-way symmetry, so one-fifth of it is extracted
for isogeometric segmentation (see Figure 14).

Chair stand piece. The chair stand piece (Figure 13) was created to test various
preprocessing strategies and demonstrate the algorithm for solids with convex
edges. The result for one preprocessing strategy is shown in Figure 14. A sec-
ond preprocessing strategy is shown in Figure 16 where the resulting topological
hexahedra are volume parameterized using the techniques in Section 4.
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Fig. 14 Left: the chair stand piece, preprocessed to cut it into contractible pieces. Right: the result
of the segmentation algorithm.

Fig. 15 Left: the car part, divided into two along its plane of symmetry and preprocessed to cut
it into contractible pieces. Right: segmentation of one half of the Demonstrator into topological
hexahedra.

TERRIFIC Demonstrator The preprocessed TERRIFIC Demonstrator is shown
in Figure 6 (a). The solid is segmented into topological hexahedra using the sur-
face extension and cutting loop methods described in the previous sections. The
result is shown in Figure 6 (b). The result of the removal of T-joints is shown in
Figure 6 (c).

Car part The segmentation procedure is applied to the CAD model reconstruc-
tion of the car part (See Section 2 and Figure 1 (a)–(c)). The preprocessed solid
(Figure 15, left) has a plane of symmetry. For one half, the resulting contractible
pieces are segmented into topological hexahedra (Figure 15, right). Data courtesy
of Engineering Center Steyr.

3.5 T-joint removal

For some simulation methods, it may be necessary to post-process the model to
eliminate T-joints. We do not have a general method for this. A special-purpose
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method was developed which suffices for our segmentation of the TERRIFIC
demonstrator. During the segmentation process, we keep track of adjacency infor-
mation for the solids. When the segmentation of a solid results in the creation of a
T-joint, new edges must be added to the adjacent solid(s) which must themselves be
segmented. This segmentation may create new T-joints, resulting in a propagation
of segmentations through the solid. The result for the TERRIFIC Demonstrator is
shown in Figure 6 (c). Ongoing research on advanced IGA techniques aim to handle
meshes with T-joints directly (see Section 1).

4 Hexahedron parameterization

The aim is to convert a boundary represented topological hexahedron into a volume
parameterization. Besides the possibility of quite distorted hexes, difficulty arises
from the fact that the boundary faces are trimmed surfaces, since the domain of
such a surface is not a rectangle in general.

A single topological hexahedron is parameterized by the following procedure.

1. Sample each of the 4 edges of a boundary face at parameters such that the dis-
tance between consecutive points is approximately constant. This is necessary
because the curves from adjacent boundaries do not generally have the same pa-
rameterization;

2. Apply 2-dimensional Coon’s patches to the sampled points, to produce a grid of
points in the domain;

3. Evaluate the grid points, to produce a grid on the 3D surface;
4. Applying the above steps for each of the 6 faces of the topological hexahedron,

we now have a grid of sampled boundary points. Grid points agree along the
edges because of the way the edges are sampled in Step 1. Apply 3D Coon’s
patches to the boundary points to produce a grid of interior points. (It may be
possible to skip this step if the topological hexahedron is not too heavily dis-
torted);

5. Fit a tensor product B-spline to the sampled points using a least squares method.

The fitting method could be easily modified to include more complex quality mea-
sures.

Applying the procedure to a collection of topological hexahedra produces a
multi-patch domain (i.e., a domain composed of multiple volume-parameterized
topological hexahedra) suitable for isogeometric analysis (see Section 5). If a seg-
mentation of a solid into topological hexahedra has no T-joints, then we can also
ensure watertightness of the collection of patches by the following procedure. (The
collection is not automatically watertight because the construction of cutting faces
during the segmentation, as well as the fitting of the volume patch, can cause errors
in the corresponding control points of incident patches.)

(i) Find all the incident faces between patches (the easiest way to do this is to hold
on to the adjacency information from the segmentation procedure);
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(a) (b)

Fig. 16 (a) the chair stand piece, preprocessed to cut it into contractible pieces, using a different
strategy from Figure 14. (b) representation of the chair stand as a watertight collection of tensor-
product NURBS volumes.

(ii) Wherever two or more patches meet (more than two patches can meet at vertices
or edges), the corresponding control points of all such patches are moved to the
average.

This simple adjustment is made possible by the following fact: If two topological
hexahedra meet face-to-face in a quadrilateral patch, then this patch is represented
by identical trimmed NURBS surfaces for both hexahedra. This is guaranteed by
our construction of the splitting surface, cf. Section 3.3. The steps 1-3 of our pa-
rameterization procedure therefore give identical parameterization of the matching
boundary faces in both patches. Thus, the only possible deviations between the con-
trol points are due to the approximation of the inner points in step 5. They can safely
be expected to be relatively minor and can be dealt with by the averaging step (ii).

5 Simulation

As applications of the segmentation presented in previous sections, we use the TER-
RIFIC Demonstrator and the chair stand in mechanical simulations, solving the lin-
ear elasticity partial differential equation using an isogeometric finite element dis-
cretization. In Section 5.1 we briefly present the linear elasticity problem. In Section
5.2 we describe the method for solution on a multi-patch domain. Results are pre-
sented in Sections 5.3–5.4.

5.1 The linear elasticity problem

The linear elasticity problem on a domain Ω ⊂R3 means finding a solution u : Ω →
R3 of the following boundary value problem:
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−div σ(u) = b in Ω ,

u = g on Γu,

σ(u) ·n = t on Γn,

(1)

where Γu ⊂ δΩ is the Dirichlet boundary, Γn ⊂ δΩ the Neumann boundary of the
domain, the Cauchy stress σ is expressed by the linear St. Venant-Kirchhoff consti-
tutive law,

σ(u) = 2µ ε(u)+λ traceε(u) I

using Lamé constants µ,λ > 0 and the linear strain tensor

ε(u) =
1
2
(
∇uT +∇u

)
.

For a finite element discretization the weak form of (1) is required, i.e. seeking
u ∈ H1(Ω), u|Γu = g:

∫

Ω
ε(v) : σ(u)dx =

∫

Ω
vT b dx+

∫

Γn

vT t dΓ ∀v ∈ H1
0 (Ω).

Using the 4th-order elasticity tensor C,

Ci jkl = λ δi jδkl +µ
(
δikδ jl +δilδk j

)
, i, j,k, l = 1,2,3,

the equation can be rewritten as:
∫

Ω
∇v : C : ∇u dx =

∫

Ω
vT b dx+

∫

Γn

vT t dΓ ∀v ∈ H1
0 (Ω). (2)

5.2 Isogeometric treatment with multi-patch domain

The basis of an isogeometric method is a spline representation of the domain Ω
and also the numerical solution field uh [1]. This means that there exists a global
mapping

g : Ω0→Ω , x = g(ξ ) =
n

∑
i=1

N p
i (ξ ) ci, (3)

which parameterizes the whole domain as a B-Spline or NURBS volume, using
tensor product basis functions N p

i of degree p, which are defined on the parameter
domain Ω0 using knot vectors Ξ ∈ Rn+p+1, and control points ci ∈ R3. Then uh is
discretized as the push-forward of these spline functions onto the physical domain
Ω and a set of displacement control points di ∈ R3:

uh(x) =
n

∑
i=1

N p
i

(
g−1(x)

)
di. (4)
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Finally substitution of (4) into (2) and numerical evaluation of the integrals leads to
the well-known matrix-vector form of the finite element discretization of the elas-
ticity problem:

Kd = f, (5)

where N = 3n is the dimension of the system, d is the vector of unknown control
point displacements, K the stiffness matrix and f the external force vector.

We have to deal with multi-patch partitionings of the initial domain Ω into b
subdomains (patches):

Ω =
b⋃

i=1

Ω i, Ω i∩Ω j = /0.

If two patches Ωi and Ω j are adjacent, i.e.

Ω i∩Ω j = Γ i j 6= /0,

we call Γ i j the interface between Ω i and Ω j. Thus we can discretize the solutions
ui := u|Ω i independently, but we have to enforce the conditions ui = u j on Γ i j. As
we deal with conforming parameterizations, i.e. gi|Γi j ≡ g j|Γi j ∀ Γi j, this continu-
ity constraint simply means corresponding displacement control points have to be
equal, i.e.

di
k = d j

l ∀ di
k ∈ uhi|Γi j , d j

l ∈ uh j|Γi j with ci
k = c j

l . (6)

For the enforcement of these constraints basically two possibilities exist, either
adding each constraint as additional equations in a Lagrangian multiplier approach,
or eliminating degrees of freedom from the system.

5.3 TERRIFIC Demonstrator

The isogeometric volume parameterization consists of 70 patches of cubic B-Spline
volumes, with a total of 24,010 control points and 72,030 degrees of freedom
(DOFs). Coupling of displacement control points on 132 interfaces has to be en-
forced. When Lagrangian multipliers are used for coupling, the isogeometric finite
element discretization of the model has 90,048 DOFs, otherwise when elimination
is used, it has only 53,925 DOFs.

As material parameters of linear elasticity we chose

λ = 54.0 GPa, µ = 27.8 GPa.

As boundary conditions we take a clamping of the right bore hole (see Figure 17)
by a zero Dirichlet condition at Γu and a surface traction on the left bore hole as a
Neumann boundary condition on Γn:
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(a)

(b)

Fig. 17 Linear elasticity simulation of TERRIFIC Demonstrator. Displaced part, colored by (a)
norm of displacement in [m] and (b) von Mises stress in [Pa]

u = 0 m on Γu,

t = (60.0, −42.0, 0.0)T MPa on Γn.

Running the simulation, we get a maximal norm of displacement of 7.06 mm and
internal energy of 70.1 J. The displaced object can be seen in Figure 17. Compari-
son with a commercial finite element software shows a very good correspondence
of results. Using ANSYS R© with a mesh of 20,855 quadratic tetrahedral elements
(type SOLID187) and 36,181 nodes resp. 108,543 DOFs, we have a maximum dis-
placement of 7.00 mm and energy 70.2 J. It is also worth remarking that the stress
distribution obtained from IGA in Figure 17(b) looks very smooth.
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5.4 Chair stand

The chair stand model consists of 12 cubic B-Spline volumes with a total of 3,969
control points and 11,907 DOFs. Using coupling of patches with the Lagrangian
multiplier approach we have a total of 14,231 DOFs.

For a realistic simulation of the chair stand we have added an inner cylinder
connecting the stand with the seating and a small cylinder connecting to the wheels
made from aluminum, and assumed the main parts of the stand are made from plastic
(Polyamid P6). Thus the material parameters are:

λAl = 54.0 GPa, µAl = 27.8 GPa,
λP6 = 3.19 GPa, µP6 = 0.899 GPa.

Assuming a person weighing 81.5 kg sitting on the chair, this would result in a verti-
cal force of 0.10 MPa acting as Neumann boundary condition on the inner aluminum
cylinder. Furthermore symmetry boundary conditions are applied on displacements,
since we only model one fifth of the total chair stand. As the smaller cylinder con-
nects to the wheel, which we assume as a frictionless link to the ground, no vertical
displacement is possible there.

Running the simulation, we get a small vertical displacement of the inner cylinder
of 0.82 mm and a maximal von Mises stress of 1.6 MPa. The total internal energy is
64.2 mJ. The deformed stand is visualized in Figure 18. We also validate our results
by a comparison to commercial finite element software ANSYS R©. Automated mesh
generation provides a discretization using a mix of 13,437 quadratic hexahedral
and tetrahedral elements (types SOLID186 and SOLID187) with 22,518 nodes and
57,554 DOFs. The simulation results in an evaluated z-displacement of 0.81 mm, a
von Mises stress of 1.6 MPa and a total energy of 62.8 mJ.

6 Conclusions and further work

We created a pipeline, including algorithms and software together with a rigorous
mathematical treatment, for the the conversion of 3D models into an IGA-suitable
form. The first step of the pipeline is the reconstruction, if necessary, of a CAD-
like boundary representation from triangulated data. Then the boundary represented
solid is segmented into a collection of topological hexahedra. Finally, volumetric
NURBS patches are constructed for the hexahedra.

We used outputs of the pipeline to conduct simulations based on the linear elastic-
ity problem. Results had good agreement with commercial finite element software,
demonstrating the suitability of the segmentation and parameterization for simula-
tion.

While the theory and software developed forms the core of the pipeline, there are
several improvements already under development:
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Fig. 18 Linear elasticity simulation of chair stand. Different views of displaced part, colored by
von Mises stress in [Pa]

• improved geometric construction of the cutting curves and surfaces, with theo-
retical guarantees;

• addressing solids which are non-contractible or do not have 3-vertex-connected
edge graphs without human interaction;

• improving the quality of isogeometric segmentation, in terms of the number and
shape of the resulting topological hexahedra, using the surface extension methods
described in Section 3.4.

Potential future developments include the use of splines allowing local refinement,
such as LR- or THB-splines, and improving the reconstruction of cylindrical sur-
faces using periodic splines.
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